Search results for "Reflection"
showing 10 items of 645 documents
Photon Scanning Tunneling Microscopy and Reflection Scanning Microscopy
1991
The Photon Scanning Tunneling Microscope (PSTM) is the photon analogue to the Electron Scanning Tunneling Microscope (ESTM). It uses the evanescent field due to the total internal reflection (TIR) of a light beam in a prism modulated by a sample attached to the prism. The exponential decay of the evanescent field is characterized by the penetration depth dp and depends on the angle of incidence θ, the wavelength and polarization of the incident beam. Changes in intensity are monitored by a probe tip scanned over the surface, and the data are processed to generate an image of the sample. Images produced by a prototype instrument are shown to have a vertical resolution of about 3 A and a late…
Back-scattering of whispering-gallery-modes resonances of cylindrical microcavities: Refractometric applications
2009
Whispering-gallery modes (WGM) resonances of microcapillaries are directly compatible with microfluidic systems and have demonstrated its suitability for refractometric applications [1]. Microcapillaries with a submicrometric wall exhibit very large wavelength shifts as a function of the refractive index of the liquids that fill the inside of the capillary [2]. The spatial separation between the surface where the total internal reflection takes place (the outer surface) and the sensing surface (the inner surface) where the wave interacts with the analyte is a unique property that can be exploited to deal with analytes with a refractive index higher than that of the capillary [2].
Refractometric sensor based on whispering-gallery modes of thin capillarie.
2009
Whispering-gallery modes resonances of submicron wall thickness capillaries exhibit very large wavelength shifts as a function of the refractive index of the medium that fills the inside. The sensitivity to refractive index changes is larger than in other optical microcavities as microspheres, microdisks and microrings. The outer surface where total internal reflection takes place remains always in air, enabling the measure of refractive index values higher than the refractive index of the capillary material. The fabrication of capillaries with submicron wall thickness has required the development of a specific technique. A refractometer with a response higher than 390 nm per refractive ind…
Sample–tip coupling efficiencies of the photon-scanning tunneling microscope
1991
The photon-scanning tunneling microscope is the photon analog to the electron-scanning tunneling microscope. It uses the evanescent field due to the total internal reflection of a light beam in a prism, modulated by a sample attached to the prism. The exponential decay of the evanescent field is characterized by the penetration depth dp and depends on the angle of incidence θ, the wavelength, and the polarization of the incident beam. The 1/e decay lengths range from 150 to 265 nm as deduced from the expression of the electric-field intensity in the rarer medium for θ = π/2. If we place another optically transparent medium near the surface, frustrated total reflection occurs. It is shown th…
Recent Experimental Results with the PSTM: - Observation of a Step on a Quartz Surface. - Spatial Spectroscopy of Microwaveguides
1993
The Photon Scanning Tunneling Microscope (PSTM) is based on the frustration of the total internal reflected beam by the end of an optical fiber. Till today it has been used to obtain topographic information generally for smooth samples. In this paper we report two different kinds of experimental results. First, when the sample is in the form of a step, our measurements demonstrate how the images, obtained in the constant intensity mode, depend on the orientation of the incident beam of light with respect to the step. Next, we show that the first derivative of the collected intensity with respect to the probe-sample distance at each point of the sample yields to a new kind of image named her…
Nearly zero ultraflattened dispersion in photonic crystal fibers.
2000
We present a procedure for achieving photonic crystal fibers with nearly zero ultraflattened group-velocity dispersion. Systematic knowledge of the special guiding properties of these fibers permits the achievement of qualitatively novel dispersion curves. Unlike the behavior of conventional fibers, this new type of dispersion behavior permits remarkably improved suppression of third-order dispersion, particularly in the low-dispersion domain.
Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope.
1993
A photon scanning tunneling microscope is employed to probe the surface-plasmon field in the evanes- cent region of a silver film for p (parallel to the plane of incidence) and s (perpendicular to the plane of incidence) polarizations of the light beam at several angles of incidence near the critical angle. The in- teraction between the field and the probe is measured and compared to theoretical calculations involving a single four-media model. A systematic analysis of images obtained for several positions of the optical fiber above the film is presented and it is shown that, for tip-to-sample distances smaller than half the wavelength of the incoming light, the collected intensity curves a…
Direct Bragg grating writing in a hybrid PDMS/silica photonic crystal fiber
2011
Infiltration of materials into the air holes of the PCFs can potentially manipulate their optical properties creating a new category of fibers termed as hybrid PCFs [1] and many devices based on hybrid PCFs have been developed [2–5]. Recently, a hybrid PCF with poly-dimethylsiloxane (PDMS) elastomer inclusions has been demonstrated [6]. PDMS is widely used in the area of photonics and optofluidics. It is highly transparent with a refractive index ∼1.41, conserving the total internal reflection guiding mechanism of the hybrid PCF. When PDMS is irradiated with UV light its refractive index increases [7]. In this paper we present the first example of a Bragg grating directly written using UV l…
Donor and acceptor guided modes in photonic crystal fibers.
2000
We present a triangular photonic-crystal-fiber structure that exhibits guided modes simultaneously above and below the first conduction band. We achieve this configuration by decreasing the size of one of the airholes (the defect) in a specific triangular lattice. More generally, we analyze the behavior of guided modes that depends on the size of the defect. Defects generated by decreasing or increasing the size of one of the holes produce donor or acceptor guided modes, respectively, in analogy with impurity levels in solid-state crystals. We conclude that the guiding mechanism for both donor and acceptor modes is produced by a unique phenomenon of multiple interference by a periodic struc…
Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies
2008
In this study we present a theoretical and experimental analy- sis of the application of photonic band stop filters on top of photovoltaic fluorescent concentrators in order to increase the photon collection efficiency. The light guiding effect of the fluorescent concentrator relies on total internal reflection. The escape cone of total internal reflection is their major loss mechanism. Our ray tracing simulation allows to calculate the beneficial effect of photonic band stop reflection filters, which reduce these losses, and to simulate the angular distribu- tion of the light trapped in the concentrator. We present simula- tions of the optical properties of 1D and 3D photonic structures an…