Search results for "Regularity"
showing 10 items of 98 documents
Multiple solutions for nonlinear nonhomogeneous resonant coercive problems
2018
We consider a nonlinear, nonhomogeneous Dirichlet problem driven by the sum of a \begin{document}$p$\end{document} -Laplacian ( \begin{document}$2 ) and a Laplacian. The reaction term is a Caratheodory function \begin{document}$f(z,x)$\end{document} which is resonant with respect to the principal eigenvalue of ( \begin{document}$-\Delta_p,\, W^{1,p}_0(\Omega)$\end{document} ). Using variational methods combined with truncation and comparison techniques and Morse theory (critical groups) we prove the existence of three nontrivial smooth solutions all with sign information and under three different conditions concerning the behavior of \begin{document}$f(z,\cdot)$\end{document} near zero. By …
On the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients
2017
International audience; The present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables. For the global in space problem we establish energy estimates with finite loss of derivatives, which is linearly increasing in time. This implies well-posedness in H ∞ , if the coefficients enjoy enough smoothness in x. From this result, by standard arguments (i.e. extension and convexification) we deduce also local existence and uniqueness. A huge part of the analysis is devoted to give an appropriate sense to the Cauchy problem, which is not evide…
Solutions and positive solutions for superlinear Robin problems
2019
We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.
A multiplicity theorem for parametric superlinear (p,q)-equations
2020
We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
$C^{1,��}$ regularity for the normalized $p$-Poisson problem
2017
We consider the normalized $p$-Poisson problem $$-��^N_p u=f \qquad \text{in}\quad ��.$$ The normalized $p$-Laplacian $��_p^{N}u:=|D u|^{2-p}��_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,��}_{loc}$ regularity with nearly optimal $��$ for viscosity solutions of this problem. In the case $f\in L^{\infty}\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\in L^q\cap C$, $q>\max(n,\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.
Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term
2006
We study existence and regularity of distributional solutions for possibly degenerate quasi-linear parabolic problems having a first order term which grows quadratically in the gradient. The model problem we refer to is the following (1){ut−div(α(u)∇u)=β(u)|∇u|2+f(x,t),in Ω×]0,T[;u(x,t)=0,on ∂Ω×]0,T[;u(x,0)=u0(x),in Ω. Here Ω is a bounded open set in RN, T>0. The unknown function u=u(x,t) depends on x∈Ω and t∈]0,T[. The symbol ∇u denotes the gradient of u with respect to x. The real functions α, β are continuous; moreover α is positive, bounded and may vanish at ±∞. As far as the data are concerned, we require the following assumptions: ∫ΩΦ(u0(x))dx<∞ where Φ is a convenient function which …
Robin problems with general potential and double resonance
2017
Abstract We consider a semilinear elliptic problem with Robin boundary condition and an indefinite and unbounded potential. The reaction term is a Caratheodory function exhibiting linear growth near ± ∞ . We assume that double resonance occurs with respect to any positive spectral interval. Using variational tools and critical groups, we show that the problem has a nontrivial smooth solution.
Multiple nodal solutions for semilinear robin problems with indefinite linear part and concave terms
2017
We consider a semilinear Robin problem driven by Laplacian plus an indefinite and unbounded potential. The reaction function contains a concave term and a perturbation of arbitrary growth. Using a variant of the symmetric mountain pass theorem, we show the existence of smooth nodal solutions which converge to zero in $C^1(\overline{\Omega})$. If the coefficient of the concave term is sign changing, then again we produce a sequence of smooth solutions converging to zero in $C^1(\overline{\Omega})$, but we cannot claim that they are nodal.
Superlinear Robin Problems with Indefinite Linear Part
2018
We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.
Multiple solutions for strongly resonant Robin problems
2018
We consider nonlinear (driven by the p†Laplacian) and semilinear Robin problems with indefinite potential and strong resonance with respect to the principal eigenvalue. Using variational methods and critical groups, we prove four multiplicity theorems producing up to four nontrivial smooth solutions.