Search results for "Relaxation"

showing 10 items of 1162 documents

Theoretical insights on the importance of anchoring vs molecular geometry in magnetic molecules acting as junctions

2019

The anchoring of the molecule to an electrode is known to be a key factor in single-molecule spintronics experiments. Likewise, a relaxation down to the most stable geometry is a critical step in theoretical simulations of transport through single-molecule junctions. Herein we present a set of calculations designed to analyze and compare the effect of different anchoring points and the effect of perturbations in the molecular geometry and interelectrode distance. As model system we chose the [V($\alpha$-C$_3$S$_5$)$_3$]$^{2-}$ complex connecting two Au(111) electrodes in a slightly compressed geometry. In our calculations, the attachment happens through an S-Au bond, a common anchoring stra…

010302 applied physicsMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsRelaxation (NMR)AnchoringConductanceFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMolecular geometryChemical physicsPosition (vector)0103 physical sciencesElectrodeMesoscale and Nanoscale Physics (cond-mat.mes-hall)Molecule0210 nano-technology
researchProduct

Isothermal relaxation of discommensurations in K2ZnCl4

1994

At the incommensurate-ferroelectric transition temperature T c of K 2 ZnCl 4 , the dielectric susceptibility contains an anomalous contribution both above and below T c . Previous quasi-static dielectric measurements and hysteresis loops demonstrated that this anomalous part arises from the peculiar dynamics of discommensurations. We have used isothermal dielectric measurements to get some insight into the long time dynamics of these discommensurations. We have found that the characteristic relaxation times τ are of the order of 10 4 s in the incommensurate and in the ferroelectric phase. Even more unusual is a non-monotonous relaxation which is observed in a restricted temperature range ab…

010302 applied physicsMaterials scienceCondensed matter physicsTransition temperatureGeneral EngineeringStatistical and Nonlinear PhysicsDielectricAtmospheric temperature range01 natural sciencesFerroelectricityIsothermal processHysteresisCondensed Matter::Materials SciencePhase (matter)[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesRelaxation (physics)010306 general physics
researchProduct

A procedure for slicing and characterizing soft heterogeneous and irregular-shaped tissue

2020

Abstract This paper presents a slicing technique useful to prepare precise and repeatable samples from organs which are irregularly shaped and highly heterogeneous for mechanical testing and advanced microscopy observation. The suggested technique does not seem to influence the internal microstructure and it is employed here for testing specimens cut from different region of the meniscal tissue. Fast Fourier Transform analysis is used to quantify characteristic features of the microstructure (collagen fibers orientation, pore size) after slicing prior mechanical testing. Uniaxial (relaxation) tests are performed on dog-bone meniscal samples. Stress relaxation testing results on samples cut …

010302 applied physicsMaterials scienceOrientation (computer vision)Fast Fourier transform02 engineering and technology021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesSlicingStress (mechanics)0103 physical sciencesMicroscopyStress relaxationRelaxation (approximation)0210 nano-technologyBiomedical engineeringMaterials Today: Proceedings
researchProduct

Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

2021

The authors would like to thank P. Yudin for valuable discussions, N. Nepomniashchaia for VASE studies, and S. Cichon for XPS analysis. The authors acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme ‘‘Research, Development and Education’’ (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760), and ERA NET project Sun2Chem (E. K. and L. R.). Calculations have been done on the LASC Cluster in the ISSP UL.

010302 applied physicsMaterials scienceRelaxation (NMR)Oxidechemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesOxygenMetalCrystalchemistry.chemical_compoundchemistryChemical physicsvisual_art0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Chemistryvisual_art.visual_art_mediumThin film0210 nano-technologyPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Stabilization of primary mobile radiation defects in MgF2 crystals

2016

Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceExcitonRelaxation (NMR)Quantum yieldIonic bonding02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectMolecular physicsOrders of magnitude (time)0103 physical sciencesRadiation damage0210 nano-technologyInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Domain Walls Motions in Barium Titanate Ceramics

1996

The shear modulus and mechanical loss at low frequencies (0.01, 0.3, 1 Hz) are measured by an inverted pendulum for BaTiO 3 ceramic with large grain sizes. The permittivity and dielectric losses are also investigated for the same material at higher frequencies between 1 and 100 kHz as function of temperature. Those results show several relaxation peaks in the ferroelectric phases. The activation energy of each peak is obtained to be 0.29, 0.45, 0.68, 0.92 eV. The influences of strain amplitude and thermal treatments are studied specially for the mechanical relaxation peak located in the tetragonal phase. All the relaxation peaks could be associated to the interaction of oxygen vacancies in …

010302 applied physicsPermittivityMaterials scienceCondensed matter physicsGeneral Physics and AstronomyMineralogy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityPiezoelectricityShear moduluschemistry.chemical_compoundchemistry[PHYS.HIST]Physics [physics]/Physics archivesvisual_art0103 physical sciencesBarium titanatevisual_art.visual_art_mediumRelaxation (physics)Dielectric lossCeramic0210 nano-technologyLe Journal de Physique IV
researchProduct

Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

2016

ABSTRACTThermal expansion, Raman and dielectric properties of the lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corre…

010302 applied physicsPermittivityPhase transitionMaterials scienceCondensed matter physicsRelaxation (NMR)02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesThermal expansionTetragonal crystal systemsymbols.namesakePhase (matter)0103 physical sciencessymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyInstrumentationPhase Transitions
researchProduct

Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics

2016

ABSTRACTLead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral–tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifte…

010302 applied physicsPermittivityPhase transitionMaterials scienceDopingAnalytical chemistry02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeDifferential scanning calorimetryvisual_art0103 physical sciencesvisual_art.visual_art_mediumsymbolsRelaxation (physics)General Materials ScienceCeramic0210 nano-technologyRaman spectroscopyInstrumentationPhase Transitions
researchProduct

Two-phase dielectric polar structures in 0.1NBT-0.6ST-0.3PT solid solutions

2018

Abstract In this work we address the peculiarities of the macroscopic responses in ternary 0.1Na0·5Bi0·5TiO3-0.6SrTiO3-0.3PbTiO3 (0.1NBT-0.6ST-0.3PT) solid solutions. These solid solutions exhibit a spontaneous first order relaxor to normal ferroelectric phase transition. The phase transition is accompanied by a broad dielectric relaxation which expands over 10 orders of magnitude in frequency just above the phase transition temperature. The temperature dependence of polarization shows that non-zero net polarization persists above the phase transition temperature. Below the phase transition temperature, it is not possible to describe the temperature dependence of polarization with a power l…

010302 applied physicsPhase transitionMaterials sciencePolymers and PlasticsCondensed matter physicsMetals and Alloys02 engineering and technologyDielectric021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesFerroelectricityElectronic Optical and Magnetic MaterialsCondensed Matter::Materials SciencePiezoresponse force microscopyPhase (matter)0103 physical sciencesCeramics and CompositesRelaxation (physics)0210 nano-technologySolid solutionBauwissenschaften
researchProduct

Nonlinear response theory for Markov processes II: Fifth-order response functions

2017

The nonlinear response of stochastic models obeying a master equation is calculated up to fifth-order in the external field thus extending the third-order results obtained earlier (G. Diezemann, Phys. Rev. E{\bf 85}, 051502 (2012)). For sinusoidal fields the $5\om$-component of the susceptibility is computed for the model of dipole reorientations in an asymmetric double well potential and for a trap model with a Gaussian density of states. For most realizations of the models a hump is found in the higher-order susceptibilities. In particular, for the asymmetric double well potential model there are two characteristic temperature regimes showing the occurence of such a hump as compared to a …

010304 chemical physicsField (physics)Stochastic modellingMarkov processFOS: Physical sciencesDouble-well potentialCondensed Matter - Soft Condensed Matter01 natural sciencesNonlinear systemDipolesymbols.namesakeQuantum mechanics0103 physical sciencesMaster equationsymbolsRelaxation (physics)Soft Condensed Matter (cond-mat.soft)Statistical physics010306 general physicsMathematics
researchProduct