6533b86dfe1ef96bd12c93f8

RESEARCH PRODUCT

Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics

Anna KalvaneE.m. DutkiewiczDorota SitkoAndris SternbergViktor BovtunJan SuchaniczK. KoniecznyA. WajdaK. Kluczewska

subject

010302 applied physicsPermittivityPhase transitionMaterials scienceDopingAnalytical chemistry02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeDifferential scanning calorimetryvisual_art0103 physical sciencesvisual_art.visual_art_mediumsymbolsRelaxation (physics)General Materials ScienceCeramic0210 nano-technologyRaman spectroscopyInstrumentation

description

ABSTRACTLead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral–tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral–tetragonal phase transition and broadening of the Raman bands with increasing Sr content a...

https://doi.org/10.1080/01411594.2016.1177825