Search results for "Repressor Protein"

showing 10 items of 169 documents

Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes

2008

Abstract Background The maternal contribution of transcripts and proteins supplied to the zygote is crucial for the progression from a gametic to an embryonic control of preimplantation development. Here we compared the transcriptional profiles of two types of mouse MII oocytes, one which is developmentally competent (MIISN oocyte), the other that ceases development at the 2-cell stage (MIINSN oocyte), with the aim of identifying genes and gene expression networks whose misregulated expression would contribute to a reduced developmental competence. Results We report that: 1) the transcription factor Oct-4 is absent in MIINSN oocytes, accounting for 2) the down-regulation of Stella, a matern…

Chromosomal Proteins Non-HistoneCleavage Stage OvumRegulatorEmbryonic DevelopmentBiologyOct-4MicemedicineAnimalsCluster AnalysisGene Regulatory Networkslcsh:QH301-705.5MetaphaseOligonucleotide Array Sequence AnalysisRegulation of gene expressionGeneticsZygoteGene Expression ProfilingGene Expression Regulation DevelopmentalOocyteEmbryonic stem cellCell biologyGene expression profilingMice Inbred C57BLRepressor ProteinsRNA Messenger Storedmedicine.anatomical_structurelcsh:Biology (General)OocytesFemaleDevelopmental biologyOctamer Transcription Factor-3Developmental BiologyResearch ArticleBMC Developmental Biology
researchProduct

Reorganization of Nuclear Domain 10 Induced by Papillomavirus Capsid Protein L2

2002

AbstractNuclear domains (ND) 10 are associated with proteins implicated in transcriptional regulation, growth suppression, and apoptosis. We now show that the minor capsid protein L2 of human papillomavirus (HPV) type 33 induces a reorganization of ND10-associated proteins. Whereas the promyelocytic leukemia protein, the major structural component of ND10, was unaffected by L2, Sp100 was released from ND10 upon L2 expression. The total cellular amount of Sp100, but not of Sp100 mRNA, decreased significantly, suggesting degradation of Sp100. Proteasome inhibitors induced the dispersal of Sp100 and inhibited the nuclear translocation of L2. In contrast to Sp100, Daxx was recruited to ND10 by …

Co-Repressor ProteinsImmunoprecipitationFluorescent Antibody TechniqueVaccinia virusPromyelocytic Leukemia ProteinAutoantigenspapillomavirusCell LinePromyelocytic leukemia proteinCapsidDeath-associated protein 6DaxxVirologyHumansSp100RNA MessengerAdaptor Proteins Signal TransducingCell NucleusRecombination GeneticbiologyTumor Suppressor ProteinsIntracellular Signaling Peptides and ProteinsNuclear ProteinsND10Signal transducing adaptor proteinAntigens NuclearOncogene Proteins ViralL2biochemical phenomena metabolism and nutritionBlotting NorthernMolecular biologyNeoplasm ProteinsTransport proteinCell biologyProtein TransportProteasomeCapsidbiology.proteinRNACapsid ProteinsFemaleCarrier ProteinsCo-Repressor ProteinsMolecular ChaperonesTranscription FactorsVirology
researchProduct

Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 an…

2003

Nuclear domains called ND10 or PML bodies might function as nuclear depots by recruiting or releasing certain proteins. Although recruitment of proteins through interferon-induced upregulation and SUMO-1 modification level of PML had been defined, it is not known whether release of proteins is regulated and has physiological consequences. Exposure to sublethal environmental stress revealed a sequential release of ND10-associated proteins. Upon heat shock Daxx and Sp100 were released but PML remained, whereas exposure to subtoxic concentrations of CdCl2 induced the release of ND10-associated proteins, including PML, with Sp100 remaining in a few sites. In both cases,recovery times were simil…

Co-Repressor ProteinsMAP Kinase Signaling SystemMacromolecular SubstancesSUMO-1 ProteinPromyelocytic Leukemia ProteinMicePromyelocytic leukemia proteinDeath-associated protein 6Stress PhysiologicalHeat shock proteinEndopeptidasesAnimalsHSP70 Heat-Shock ProteinsEnzyme InhibitorsHeat shockTranscription factorCells CulturedHeat-Shock ProteinsbiologyTumor Suppressor ProteinsIntracellular Signaling Peptides and ProteinsNuclear ProteinsCell BiologyCell Nucleus StructuresNeoplasm ProteinsCell biologyHsp70Cysteine EndopeptidasesEukaryotic CellsGene Expression RegulationImmunologybiology.proteinSignal transductionCarrier ProteinsCo-Repressor ProteinsHeat-Shock ResponseCadmiumMolecular ChaperonesTranscription FactorsJournal of Cell Science
researchProduct

Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence

2020

AbstractTranscriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-me…

Cyclin-Dependent Kinase Inhibitor p21SenescenceAcademicSubjects/SCI00010DNA repairDNA damageRAD51E2F4 Transcription FactorBiologyDNA Mismatch Repair03 medical and health sciences0302 clinical medicineCell Line TumorBenzo(a)pyreneGeneticsHumansCellular SenescenceCell Line Transformed030304 developmental biology0303 health sciencesGene regulation Chromatin and EpigeneticsRecombinational DNA RepairEpithelial CellsKv Channel-Interacting ProteinsCell Cycle CheckpointsDNAFibroblastsCell biologyDNA-Binding ProteinsRepressor ProteinsMSH6DNA Repair EnzymesExodeoxyribonucleasesMutS Homolog 2 ProteinGamma RaysMSH2030220 oncology & carcinogenesisCarcinogensMCF-7 CellsDNA mismatch repairRad51 RecombinaseCell agingE2F1 Transcription FactorDNA DamageSignal TransductionNucleic Acids Research
researchProduct

Regulation of ribonucleotide reductase in response to iron deficiency

2011

Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2–Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity, and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the re…

CytoplasmSaccharomyces cerevisiae ProteinsDeoxyribonucleoside triphosphateRibonucleoside Diphosphate ReductaseRNA StabilityProtein subunitSaccharomyces cerevisiaeCell Cycle ProteinsSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiologyResponse ElementsArticleTristetraprolinGene Expression Regulation FungalRibonucleotide ReductasesHumansRNA MessengerMolecular BiologyTranscription factorCell NucleusDNA synthesisIntracellular Signaling Peptides and ProteinsFungal geneticsRNA-Binding ProteinsRNA FungalIron DeficienciesCell Biologybiology.organism_classificationDNA-Binding ProteinsRepressor ProteinsCheckpoint Kinase 2Protein SubunitsProtein TransportRibonucleotide reductaseBiochemistryCytoplasmTranscription Factors
researchProduct

The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G 1 phase cell cycle regulatory proteins

1999

The DNA-binding subunit of replication factor C (RFCp140) plays an important role in both DNA replication and DNA repair. The mechanisms regulating activation of RFCp140 thereby controlling replication and cellular proliferation are largely unknown. We analyzed protein expression of RFCp140 during cell cycle progression and investigated the association of RFCp140 with cell cycle regulatory proteins in cell lines of various tissue origin and in primary hematopoietic cells. Western and Northern blot analyses of RFCp140 from synchronized cells showed downregulation of RFCp140 when cells enter a G0-like quiescent state and upregulation of RFCp140 in cycling cells. Translocation from the cytopla…

CytoplasmSaccharomyces cerevisiae ProteinsT-LymphocytesCyclin ACell Cycle ProteinsEukaryotic DNA replicationCell LineMinor Histocompatibility AntigensDNA replication factor CDT1MiceReplication factor CControl of chromosome duplicationDrug DiscoveryAnimalsHumansReplication Protein CGenetics (clinical)Cell NucleusHomeodomain ProteinsbiologyG1 PhaseS-phase-promoting factor3T3 CellsCell cycleMolecular biologyUp-RegulationCell biologyDNA-Binding ProteinsRepressor ProteinsProto-Oncogene Proteins c-bcl-2biology.proteinMolecular MedicineOrigin recognition complexJournal of Molecular Medicine
researchProduct

ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1).

2000

The Myc promoter-binding protein-1 (MBP-1) is a 37-38 kDa protein that binds to the c-myc P2 promoter and negatively regulates transcription of the protooncogene. MBP-1 cDNA shares 97% similarity with the cDNA encoding the glycolytic enzyme alpha-enolase and both genes have been mapped to the same region of human chromosome 1, suggesting the hypothesis that the two proteins might be encoded by the same gene. We show here data indicating that a 37 kDa protein is alternatively translated from the full-length alpha-enolase mRNA. This shorter form of alpha-enolase is able to bind the MBP-1 consensus sequence and to downregulate expression of a luciferase reporter gene under the control of the c…

CytoplasmTranscriptional repressionRecombinant Fusion ProteinsBiophysicsEnolaseCodon InitiatorDown-RegulationBiologyAlternative translationResponse ElementsTransfectionBiochemistryCell LineGene productHSPA4Proto-Oncogene Proteins c-mycStructural BiologyHSPA2GeneticsBiomarkers TumorE2F1AnimalsHumansSOCS6Genes Tumor SuppressorDNA bindingPromoter Regions GeneticMolecular BiologyYY1Tumor Suppressor ProteinsNuclear ProteinsCell BiologyDNAMolecular biologyGPS2Neoplasm ProteinsDNA-Binding ProteinsMolecular WeightRepressor ProteinsAlternative SplicingGATAD2BChromosomes Human Pair 1Phosphopyruvate HydrataseProtein BiosynthesisPeptidesProtein BindingFEBS letters
researchProduct

Targeting positive regulatory domain I-binding factor 1 and X box-binding protein 1 transcription factors by multiple myeloma-reactive CTL.

2005

Abstract Growing evidence indicates that multiple myeloma (MM) and other malignancies are susceptible to CTL-based immune interventions. We studied whether transcription factors inherently involved in the terminal differentiation of mature B lymphocytes into malignant and nonmalignant plasma cells provide MM-associated CTL epitopes. HLA-A*0201 (A2.1) transgenic mice were used to identify A2.1-presented peptide Ag derived from the plasma cell-associated transcriptional regulators, positive regulatory domain I-binding factor 1 (PRDI-BF1) and X box-binding protein 1 (XBP-1). A2.1-restricted CTL specific for PRDI-BF1 and XBP-1 epitopes efficiently killed a variety of MM targets. PRDI-BF1- and X…

Cytotoxicity ImmunologicX-Box Binding Protein 1Cellular differentiationImmunologyEpitopes T-LymphocyteMice TransgenicRegulatory Factor X Transcription FactorsBiologyEpitopeMiceImmune systemCell Line TumorHLA-A2 AntigenImmunology and AllergyAnimalsHumansTranscription factorAntigen PresentationB-LymphocytesCell DeathT-cell receptorCell DifferentiationCytotoxicity Tests ImmunologicX-Box Binding Protein 1Molecular biologyPeptide FragmentsCell biologyDNA-Binding ProteinsMice Inbred C57BLRepressor ProteinsCTL*Self ToleranceNIH 3T3 CellsPositive Regulatory Domain I-Binding Factor 1Multiple MyelomaCD8T-Lymphocytes CytotoxicTranscription FactorsJournal of immunology (Baltimore, Md. : 1950)
researchProduct

Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus…

2004

ABSTRACTLactobacillus plantarumdisplays a substrate-induciblepadAgene encoding a phenolic acid decarboxylase enzyme (PadA) that is considered a specific chemical stress response to the inducing substrate. The putative regulator ofpadAwas located in thepadAlocus based on its 52% identity with PadR, thepadAgene transcriptional regulator ofPediococcus pentosaceus(L. Barthelmebs, B. Lecomte, C. Diviès, and J.-F. Cavin, J. Bacteriol.182:6724-6731, 2000). Deletion of theL. plantarum padRgene clearly demonstrates that the protein it encodes is the transcriptional repressor of divergently orientedpadA. ThepadRgene is cotranscribed with a downstream open reading frame (ORF1), the product of which m…

DNA BacterialCoumaric AcidsCarboxy-LyasesMolecular Sequence DataRepressorGenetics and Molecular BiologyBiologymedicine.disease_causeApplied Microbiology and BiotechnologyOpen Reading FramesBacterial ProteinsTranscription (biology)Transcriptional regulationmedicineAmino Acid SequenceCloning MolecularPromoter Regions GeneticGeneEscherichia coliDNA PrimersBinding SitesEcologyBase SequenceSequence Homology Amino Acidfood and beveragesPromoterbiology.organism_classificationMolecular biologyRepressor ProteinsOpen reading frameLactobacillusBiochemistryGenes BacterialPropionatesLactobacillus plantarumGene DeletionFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

Role of two operators in regulating the plasmid-borne raf operon of Escherichia coli

1994

The plasmid-borne raf operon encodes functions required for the inducible uptake and utilization of raffinose in Escherichia coli K12. The expression of three structural genes for alpha-galactosidase (rafA), Raf permease (rafB) and sucrose hydrolase (rafD) is negatively controlled by the binding of RafR repressor (rafR) to two operator sites, O1 and O2, that flank the -35 sequence of the raf promoter, PA. In vitro, O1 and O2 are occupied on increasing the concentration of RafR, without detectable preference for one site or the other or any indication of cooperative binding. Nucleotide substitutions at positions 3, 4 or 5 in an operator half-site prevented repressor binding, supporting a mod…

DNA BacterialOperator Regions GeneticOperonBase pairMolecular Sequence DataRepressorBiologyBinding CompetitiveRaffinoseTranscription (biology)OperonEscherichia coliGeneticsBinding siteSite-directed mutagenesisMolecular BiologyBase SequenceHelix-Loop-Helix MotifsStructural geneCooperative bindingGene Expression Regulation BacterialDNA-Binding ProteinsRepressor ProteinsBiochemistryGenes Bacterialalpha-GalactosidaseMutagenesis Site-DirectedAutoradiographyElectrophoresis Polyacrylamide GelPlasmidsMolecular and General Genetics MGG
researchProduct