Search results for "Reverse electrodialysi"

showing 10 items of 101 documents

Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse ele…

2019

Abstract Electrochemical processes are considered very effective methods for the treatment of wastewater contaminated by organics resistant to conventional biological processes and various inorganic pollutants. Large sites that treat wastewaters usually deal with a large number of waters often characterized by different salinity contents, that could be potentially used to provide the energy necessary for the electrochemical remediation. Hence, in this work a reverse electrodialysis (RED) process for the treatment of synthetic wastewaters contaminated by organics, without energy inputs, using the salinity gradient of different wastewaters, was studied, for the first time. It was found that t…

SalinityEnvironmental EngineeringChemical substanceEnvironmental remediationHealth Toxicology and Mutagenesis0208 environmental biotechnology02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidCathodic protectionPhysical PhenomenaStack (abstract data type)ElectricityReversed electrodialysisEnvironmental ChemistryElectrodes0105 earth and related environmental sciencesPublic Health Environmental and Occupational HealthElectrochemicalGeneral MedicineGeneral ChemistryContaminationSettore ING-IND/27 - Chimica Industriale E TecnologicaPulp and paper industryPollution020801 environmental engineeringSalinityalinity gradientWastewaterEnvironmental sciencereverse electrodialysiChemosphere
researchProduct

RED Heat-to-Power: conversione di calore di scarto in energia elettrica mediante elettrodialisi inversa a ciclo chiuso

2016

La produzione di energia da gradienti salini si sta affermando come una valida alternativa alle tradizionali fonti di energia rinnovabili. In particolare l’elettrodialisi inversa (RED) è di certo tra le tecnologie più promettenti per effettuare la conversione di gradienti salini in energia utile. Un recente sviluppo è l’utilizzo del processo RED a ciclo chiuso con soluzioni saline artificiali, nel quale le soluzioni in uscita dall’unità RED vengono rigenerate all’interno di un’unità di rigenerazione termica, che ripristina il gradiente salino iniziale. L’utilizzo del sistema a ciclo chiuso premette dunque di convertire calore a bassa temperatura (e.g. calore di scarto a T <70-100°C) in e…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciReverse Electrodialysis (RED) Heat engine RED Heat to Power Salinity Gradient Power (SGP)
researchProduct

Ion Exchange Membrane deformation and its relevance in Reverse ElectroDialysis

2017

Reverse electrodialysis (RED) is an innovative electro-membrane technology for electric energy generation from two salt solutions with different concentration. This different concentration is the driving force to a selective movement of ions from the concentrate channel to the dilute one oriented by Ion Exchange Membranes (IEMs). Typically, RED stack are made by piling alternatively cation exchange membranes and anion exchange membranes with the aid of spacers or profiles built on the membrane surface. Two electrodic compartments are placed at the two ends of the stack, where the ion flux generated is converted into an electric current able to circulate through an external load connected to…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciSettore ING-IND/06 - FluidodinamicaReverse electrodialysis Ion exchange membrane deformationSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Coupling CFD simulation with a simplified process model for reverse electrodialysis units

2017

Salinity gradient between two solutions is a renewable source of energy. Among the technologies able to exploit the salinity gradient, reverse electrodialysis (RED) is an electrochemical process for electrical power generation through direct conversion. Ion exchange membranes, piled alternately and separated by net spacers or membrane profiles, are the key elements of a RED stack. A multiplex phenomenology occurs in RED units; Ohmic and non-Ohmic (due to concentration changes) voltage losses and pressure drop are the main issues, and the membrane/channel configuration is crucial for the stack performance. In this framework, mathematical modelling can be a powerful tool for predictive purpos…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciSettore ING-IND/06 - FluidodinamicaSalinity gradient energy Reverse electrodialysis CFD Process modelSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis

2014

Reverse electrodialysis (RE) is a promising technology for electric power generation by converting the chemical potential difference of a salinity gradient, within a stack equipped by selective ion-exchange membranes. Concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry is a fundamental operating parameter for the optimization of the system. In this work, Computational Fluid Dynamic simulations were performed to predict fluid flow and mass transfer in spacer-filled channels for RE applications. A parametric analysis for different spacer geometries was carried out; in particular, woven and non woven spacers were si…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCFD Reverse Electrodialysis concentration polarization spacer-filled channelSettore ING-IND/19 - Impianti Nucleari
researchProduct

Electromembrane Processes: Experiments and Modelling

2021

This Special Issue of Membranes journal focuses on electromembrane processes and is motivated by the increasing interest of the scientific community towards their characterization by experiments and modelling for several applications [...]

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciComputer sciencereverse electrodialysisProcess Chemistry and Technologylcsh:TP155-156Filtration and Separationmonovalent selective membranesimulationlcsh:Chemical technologyCharacterization (materials science)acid-base flow batteryMembraneEditorialElectromembrane processn/aChemical Engineering (miscellaneous)lcsh:TP1-1185Biochemical engineeringelectrodialysislcsh:Chemical engineeringCFDelectrochemical intercalation–deintercalationMembranes
researchProduct

Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for Reverse Osmosis

2019

Abstract The need to reduce energy consumption in seawater Reverse Osmosis (RO) process has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis (ED) and Reverse Electrodialysis (RED) can act as a pre-desalting step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO systems. Each process model was validated. Then a sensitivity analysis was performed to assess the effect of the integration on the overall process cost saving. The analysis was performed by changing ED or RED voltage …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCostGeneral Chemical Engineering02 engineering and technology7. Clean energy020401 chemical engineeringReversed electrodialysisGeneral Materials ScienceSensitivity (control systems)0204 chemical engineeringElectromembrane proceReverse osmosisProcess engineeringSettore ING-IND/19 - Impianti NucleariWater Science and Technologybusiness.industryMechanical EngineeringHybrid proceGeneral ChemistryEnergy consumptionElectrodialysis021001 nanoscience & nanotechnologyAssisted reverse electrodialysi6. Clean waterEnergy consumptionProcess intensificationHybrid systemEnvironmental scienceSeawaterProcess costing0210 nano-technologybusinessDesalination
researchProduct

The acid–base flow battery : Sustainable energy storage via reversible water dissociation with bipolar membranes

2020

The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot pla…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEnergy storageFiltration and Separation02 engineering and technology010402 general chemistrylcsh:Chemical technology01 natural sciences7. Clean energyEnergy storagePeak demandReverse electrodialysisBipolar membraneChemical Engineering (miscellaneous)lcsh:TP1-1185lcsh:Chemical engineeringProcess engineeringbusiness.industryProcess Chemistry and Technologylcsh:TP155-156021001 nanoscience & nanotechnologyFlow batterybipolar membrane electrodialysi0104 chemical sciencesRenewable energyChemical energyElectricity generationPilot plant13. Climate actionFlow batteryPerspectiveBipolar membrane electrodialysisEnvironmental scienceElectricityWater dissociation0210 nano-technologybusinessreverse electrodialysiMembranes
researchProduct

Ionic shortcut currents via manifolds in reverse electrodialysis stacks

2020

Abstract Reverse electrodialysis (RED) is a blue energy technology for clean and sustainable electricity harvesting from the mixing entropy of salinity gradients. Recently, many efforts have been devoted to improving the performance of RED units by developing new ion-exchange membranes and by reducing the detrimental phenomena affecting the process. Among these sources of “irreversibility”, the shortcut currents (or parasitic currents) flowing through alternative pathways may affect the process efficiency. Although such phenomena occur in several electrochemical processes (e.g. fuel cells, bipolar plate cells and vanadium redox flow batteries), they have received a poor attention in RED uni…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technology7. Clean energyElectromembrane process020401 chemical engineeringElectrical resistance and conductanceStack (abstract data type)Reverse electrodialysisReversed electrodialysisGeneral Materials Science0204 chemical engineeringProcess engineeringIonic shortcut currentsWater Science and TechnologyIon exchange membraneParasitic phenomenaSalinity gradient energybusiness.industryMechanical EngineeringGeneral ChemistryElectrodialysis021001 nanoscience & nanotechnologyEnergy technology6. Clean waterMembraneSettore ING-IND/23 - Chimica Fisica ApplicataElectricity0210 nano-technologybusinessEnergy source
researchProduct

Pressure drop at low reynolds numbers in woven-spacer-filled channels for membrane processes: CFD prediction and experimental validation

2017

The energy consumption due to pumping power is a crucial issue in membrane processes. Spacers provide mechanical stability and promote mixing, yet increasing pressure drop. Woven spacers and their behaviour at low Reynolds numbers are less studied in the literature. Nevertheless, they are typical of some membrane technologies, as reverse electrodialysis (RED). RED is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ion-exchange membranes. The mechanical energy required for pumping the feed solutions, can dramatically reduce the net power output. In this work computational fluid dynamics (CFD)…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti Chimici02 engineering and technology010501 environmental sciencesComputational fluid dynamics01 natural sciencessymbols.namesakeReverse electrodialysiMembrane processesLow Reynolds numberPressure dropWoven spacer; Pressure drop; Low Reynolds numbers; CFD; Reverse electrodialysis; Membrane processesWoven spacerSettore ING-IND/19 - Impianti Nucleari0105 earth and related environmental sciencesPressure dropbusiness.industryReynolds numberMechanicsExperimental validation021001 nanoscience & nanotechnologyMembranesymbolsSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessCFD
researchProduct