Search results for "Rotation"

showing 10 items of 935 documents

The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit

2011

We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveSpectral lineNeutron starOrbitSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarOrbital motionAstrophysics::Solar and Stellar AstrophysicsRoche lobeAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaneutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binaries [stars]stars: neutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binariesNoise (radio)
researchProduct

Simulations of an inhomogeneous stellar wind interacting with a pulsar wind in a binary system

2014

Binary systems containing a massive star and a non-accreting pulsar present strong interaction between the stellar and the pulsar winds. The properties of this interaction, which largely determine the non-thermal radiation in these systems, strongly depend on the structure of the stellar wind, which can be clumpy or strongly anisotropic, as in Be stars. We study numerically the influence of inhomogeneities in the stellar wind on the structure of the two-wind interaction region. We carried out for the first time axisymmetric, relativistic hydrodynamical simulations, with Lorentz factors of ~6 and accounting for the impact of instabilities, to study the impact in the two-wind interaction stru…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaLorentz transformationStrong interactionRotational symmetryFOS: Physical sciencesBinary numberAstronomy and AstrophysicsContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakePulsar13. Climate actionSpace and Planetary SciencePhysics::Space PhysicssymbolsAstrophysics::Solar and Stellar AstrophysicsDensity contrastAstrophysics - High Energy Astrophysical PhenomenaAnisotropyPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Magnetorotational Instability in Core-Collapse Supernovae

2017

We discuss the relevance of the magnetorotational instability (MRI) in core-collapse supernovae (CCSNe). Our recent numerical studies show that in CCSNe, the MRI is terminated by parasitic instabilities of the Kelvin-Helmholtz type. To determine whether the MRI can amplify initially weak magnetic fields to dynamically relevant strengths in CCSNe, we performed three-dimensional simulations of a region close to the surface of a differentially rotating proto-neutron star in non-ideal magnetohydrodynamics with two different numerical codes. We find that under the conditions prevailing in proto-neutron stars, the MRI can amplify the magnetic field by (only) one order of magnitude. This severely …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFOS: Physical sciencesGeneral Physics and AstronomyCollapse (topology)AstrophysicsMagnetic fieldCore (optical fiber)StarsSupernovaAstrophysics - Solar and Stellar AstrophysicsMagnetorotational instabilityMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)Order of magnitudeActa Physica Polonica B Proceedings Supplement
researchProduct

Propagation and stability of relativistic jets

2020

A simple look at the steady high-energy Universe reveals a clear correlation with outflows generated around compact objects (winds and jets). In the case of relativistic jets, they are thought to be produced as a consequence of the extraction of rotational energy from a Kerr black hole (Blandford-Znajek), or from the disc (Blandford-Payne). A fraction of the large energy budget provided by accretion and/or black hole rotational energy is invested into jet formation. After formation, the acceleration and collimation of these outflows allow them to propagate to large distances away from the compact object. The synchrotron cooling times demand that re-acceleration of particles takes place alon…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Radio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact starRotational energyBlack holeParticle accelerationRotating black holeAstrophysical jetAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsProceedings of High Energy Phenomena in Relativistic Outflows VII — PoS(HEPRO VII)
researchProduct

Core collapse with magnetic fields and rotation

2018

We study the effects of magnetic fields and rotation on the core collapse of a star of an initial mass of M = 20 solar masses using axisymmetric simulations coupling special relativistic magnetohydrodynamics, an approximately relativistic gravitational potential, and spectral neutrino transport. We compare models of the same core with different, artificially added profiles of rotation and magnetic field. A model with weak field and slow rotation does not produce an explosion, while stronger fields and fast rotation open the possibility of explosions. Whereas the neutrino luminosities of the exploding models are the same as or even less than those of the non-exploding model, magnetic fields …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsField (physics)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesRotation01 natural sciences7. Clean energyInstabilityMagnetic fieldComputational physicsGravitational potentialAstrophysics - Solar and Stellar Astrophysics0103 physical sciencesGravitational collapseMagnetohydrodynamicsNeutrinoAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Journal of Physics G: Nuclear and Particle Physics
researchProduct

The spin and orbit of the newly discovered pulsar IGR J17480-2446

2011

We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyAngular momentumAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars neutron stars rotation X-rays binaries pulsars individual IGR J17480-2446Accretion (astrophysics)LuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceGlobular clusterAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaeducationAstrophysics::Galaxy Astrophysics
researchProduct

Galactic rotation curves in hybrid metric-Palatini gravity

2013

Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the P…

High Energy Physics - TheoryModified gravityMass deficitDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesDark matterSurface brightness010303 astronomy & astrophysicsGalaxy rotation curvePhysics010308 nuclear & particles physicsAstronomy and AstrophysicsObservableGalactic rotation curvesAstrophysics - Astrophysics of GalaxiesGalaxyComputational physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)Astrophysics of Galaxies (astro-ph.GA)Scalar field
researchProduct

Asymptotically safe Lorentzian gravity.

2011

The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a non-trivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick-rotation. Within the Einstein-Hilbert approximation, the $\beta$-functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Loren…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Euclidean quantum gravityRenormalization groupGeneral Relativity and Quantum CosmologyRenormalizationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsWick rotationQuantum gravityFunctional renormalization groupUltraviolet fixed pointMathematical physicsPhysical review letters
researchProduct

Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities

2016

We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we f…

High Energy Physics - Theoryblack hole: rotationeffect: quantumvelocitysemiclassicalEvent horizonperturbationspace-time: black holeGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)angular momentum01 natural sciencesErgospherePenrose processGeneral Relativity and Quantum Cosmologyhorizon[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]black hole: BTZGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencescurvature: singularity010306 general physicsRing singularityPhysics010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]formationNaked singularitycoupling: conformalstabilityfield theory: scalarBlack holeClassical mechanicsHigh Energy Physics - Theory (hep-th)Apparent horizonback reaction: quantum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]massGravitational singularitysuperradianceblack hole: geometry
researchProduct

Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

2020

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…

High Energy Physics - Theorydimension: 4space-time: SchwarzschildField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)coupling: scalarcoupling: minimal01 natural sciencesGeneral Relativity and Quantum Cosmologyrenormalizationvacuum stateGeneral Relativity and Quantum Cosmologyblack hole: formation0103 physical sciencesStress–energy tensorsymmetry: rotationTensordimension: 2010306 general physicsMathematical physicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsshell modelfield theory: scalarfield theory in curved spacegravitation: collapseBlack holeFormal aspects of field theoryUnruh effectHigh Energy Physics - Theory (hep-th)tensor: energy-momentum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]quantizationSchwarzschild radiusScalar fieldPhysical Review D
researchProduct