6533b857fe1ef96bd12b503c

RESEARCH PRODUCT

Magnetorotational Instability in Core-Collapse Supernovae

Tomasz RembiaszPablo Cerdá-duránE. MüllerMiguel A. AloyJérôme GuiletMartin Obergaulinger

subject

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFOS: Physical sciencesGeneral Physics and AstronomyCollapse (topology)AstrophysicsMagnetic fieldCore (optical fiber)StarsSupernovaAstrophysics - Solar and Stellar AstrophysicsMagnetorotational instabilityMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)Order of magnitude

description

We discuss the relevance of the magnetorotational instability (MRI) in core-collapse supernovae (CCSNe). Our recent numerical studies show that in CCSNe, the MRI is terminated by parasitic instabilities of the Kelvin-Helmholtz type. To determine whether the MRI can amplify initially weak magnetic fields to dynamically relevant strengths in CCSNe, we performed three-dimensional simulations of a region close to the surface of a differentially rotating proto-neutron star in non-ideal magnetohydrodynamics with two different numerical codes. We find that under the conditions prevailing in proto-neutron stars, the MRI can amplify the magnetic field by (only) one order of magnitude. This severely limits the role of MRI channel modes as an agent amplifying the magnetic field in proto-neutron stars starting from small seed fields.

https://doi.org/10.5506/aphyspolbsupp.10.361