Search results for "Ruth"

showing 10 items of 661 documents

Highly textured Gd2Zr2O7 films grown on textured Ni-5at.%W substrates by solution deposition route: Growth, texture evolution, and microstructure dep…

2012

Abstract Growth, texture evolution and microstructure dependency of solution derived Gd 2 Zr 2 O 7 films deposited on textured Ni-5 at.%W substrates have been extensively studied. Influence of processing parameters, in particular annealing temperature and dwell time, as well as thickness effect on film texture and morphology are investigated in details. It is found that a rotated cube-on-cube epitaxy of Gd 2 Zr 2 O 7 //NiW in-plane texture forms as soon as the (004) out-plane texture appears, implying that epitaxial growth dominates the crystallization processes. Thermal energy plays an important role in minimizing the difference of interfacial energy along two directions in the anisotropic…

Materials scienceAnnealing (metallurgy)Metals and AlloysSurfaces and InterfacesRutherford backscattering spectrometryMicrostructureSurface energySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionCrystallographylawMaterials ChemistrySurface layerCrystalliteComposite materialCrystallizationThin filmThin Solid Films
researchProduct

Red-Light-Controlled Release of Drug-Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments

2018

Traditional photodynamic phototherapy is not efficient for anticancer treatment because solid tumors have a hypoxic microenvironment. The development of photoactivated chemotherapy based on photoresponsive polymers that can be activated by light in the “therapeutic window” would enable new approaches for basic research and allow for anticancer phototherapy in hypoxic conditions. This work synthesizes a novel Ru‐containing block copolymer for photoactivated chemotherapy in hypoxic tumor environment. The polymer has a hydrophilic poly(ethylene glycol) block and a hydrophobic Ru‐containing block, which contains red‐light‐cleavable (650–680 nm) drug–Ru complex conjugates. The block copolymer se…

Materials scienceBiocompatibility02 engineering and technology010402 general chemistry01 natural sciencesMicelleBiomaterialschemistry.chemical_compoundElectrochemistryCopolymerrutheniumchemistry.chemical_classificationhypoxic tumorsPolymermetallopolymers021001 nanoscience & nanotechnologyCondensed Matter PhysicsControlled release0104 chemical sciencesElectronic Optical and Magnetic Materialsred lightchemistryCancer cellBiophysics0210 nano-technologyEthylene glycolConjugatephototherapy
researchProduct

Atomic layer deposition of Ti-Nb-O thin films onto electrospun fibers for fibrous and tubular catalyst support structures

2018

Here, the authors report on the preparation of core-shell carbon-ceramic fibrous as well as ceramic tubular catalyst supports utilizing electrospinning and atomic layer deposition (ALD). In this paper, ALD of Ti-Nb-O thin films using TiCl4, Nb(OEt)5, and H2O as precursors is demonstrated. According to the time-of-flight-elastic recoil detection analysis and Rutherford backscattering spectrometry, carbon and hydrogen impurities were relatively low, but depend on the pulsing ratio of the precursors. Optimized ALD process was used for coating of sacrificial electrospun polyvinyl alcohol (PVA) template fibers to yield tubular Ti-Nb-O structures after thermal or solution based PVA removal. Anoth…

Materials scienceCatalyst supportelectrospun fibers02 engineering and technologyThermal treatmentengineering.materialsupport structures010402 general chemistry01 natural scienceschemistry.chemical_compoundAtomic layer depositionCoatingThin filmta216ta114PolyacrylonitrileSurfaces and Interfacesatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicsRutherford backscattering spectrometryElectrospinningfibrous and tubular catalyst0104 chemical sciencesSurfaces Coatings and Filmsthin filmschemistryChemical engineeringatomic layer depositionengineeringohutkalvot0210 nano-technologyJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
researchProduct

Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Near-Infrared Light-Regulated Enzyme Activity.

2017

Enzyme activity is important for metabolism, cell functions, and treating diseases. However, remote control of enzyme activity in deep tissue remains a challenge. This study demonstrates near-infrared (NIR) light-regulated enzyme activity in living cells based on upconverting nanoparticles (UCNPs) and a photoactivatable Ru complex. The Ru complex is a caged enzyme inhibitor that can be activated by blue light. To prepare a nanocarrier for NIR photoinhibition of enzyme activity, a UCNP and the caged enzyme inhibitors are encapsulated in a hollow mesoporous silica nanoparticle. In such a nanocarrier, the UCNP can harvest NIR light and convert it into blue light, which can activate the caged e…

Materials scienceCell SurvivalInfrared RaysCathepsin KNanoparticle02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesRutheniumBiomaterialsCell Line TumorLNCaPHumansGeneral Materials ScienceEnzyme Inhibitorsneoplasmschemistry.chemical_classificationbiologytechnology industry and agricultureGeneral ChemistryMesoporous silicaequipment and supplies021001 nanoscience & nanotechnologyPhoton upconversionEnzyme assay0104 chemical sciencesEnzymechemistryEnzyme inhibitorbiology.proteinNanoparticlesNanocarriers0210 nano-technologyBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n-i-p perovskite solar cells

2019

Electron-transport materials such as fullerenes are widely used in perovskite solar cells to selectively transfer the photogenerated electrons to the electrodes. In order to minimize losses at the interface between the fullerene and the electrode, it is important to reduce the energy difference between the transport level of the two materials. A common approach to reduce such energy mismatch is to increase the charge carrier density in the semiconductor through doping. A variety of molecular dopants have been reported to reduce (n-dope) fullerenes. However, most of them are either difficult to process or extremely air sensitive, with most n-dopants leading to the formation of undesirable si…

Materials scienceFullereneDopantRenewable Energy Sustainability and the EnvironmentDopingchemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyPhotochemistry7. Clean energyRutheniumchemistry.chemical_compoundchemistrySemiconductorsElectrodeGeneral Materials ScienceThin film0210 nano-technologyMesityleneMaterialsPerovskite (structure)
researchProduct

Effect of the anode composition on the performance of reversible chlor-alkali electro-absorption cells

2020

Abstract In this work, the performances of a reversible electrochemical cell for the storage of energy using the chloralkaline process was investigated. The cell operates at room temperature with liquid electrolytes in both compartments. In the electrolyzer mode, the cell transforms a sodium chloride solution into hydrogen and chlorine, which is then disproportionated to form hypochlorous acid and hypochlorite. In fuel cell operation mode, the cell becomes an electro-absorber to oxidize hydrogen at the anode while reducing hypochlorous acid at the cathode. Because of the low solubility of hydrogen, a special mechanical device is used to produce hydrogen microbubbles in the anodic compartmen…

Materials scienceHydrogenChlor-alkalichemistry.chemical_elementFiltration and SeparationReversible electrochemical cells02 engineering and technologyElectrolyteElectrochemistryRutheniumAnalytical Chemistrylaw.inventionElectrochemical cell020401 chemical engineeringlawChlorine0204 chemical engineeringElectrolysisMicrobubbles021001 nanoscience & nanotechnologyCathodeAnodechemistryChemical engineeringElectro-absorber0210 nano-technology
researchProduct

Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant

2022

In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…

Materials scienceHydrogenRUTHENIUMOXIDE THIN-FILMSDIFFUSION BARRIERInorganic chemistryOxidechemistry.chemical_elementAmorphous solidInorganic ChemistryChemistryAtomic layer depositionchemistry.chemical_compoundPhysics and AstronomychemistryALUMINUM-OXIDEOxidizing agentThin filmPlatinumTernary operationDalton Transactions
researchProduct

Mechanism of Heavy Element Retention in Hydrated Layers Formed on Leached Silicate Glasses

1988

ABSTRACTWe have investigated the relationship between hydrated layer formation during aqueous corrosion of silicates and retention of heavy elements (Fe, REE, actinides). Our approach is based on the comparison of the dissolution behaviour of silicate glasses, silicate minerals implanted with increasing doses of lead ions (1×E+12 to 1×E+15 ions/cm2), sorption experiments on silica surfaces and direct precipitation of hydrosilicates. The characterization of reacted surfaces was performed by combining Rutherford backscattering spectrometry (RBS) for profiling heavy elements with Resonant Nuclear Reaction Analysis (RNRA) for hydrogen profilimetry. The accumulation of these elements does not ne…

Materials scienceHydrogenchemistryPrecipitation (chemistry)Nuclear reaction analysisSilicate mineralsInorganic chemistrychemistry.chemical_elementMineralogySorptionActinideRutherford backscattering spectrometryDissolutionMRS Proceedings
researchProduct

Physicochemical properties of Ru(bpy)32+ entrapped in silicate bulks and fiber thin films prepared by the sol–gel method

1999

Silicate porous xerogels doped with ruthenium bipyridine (Ru(bpy)32+) complex have been obtained in the bulk form and in thin films on optical fibers. The hypsochromic shifts in the absorption and emission maxima are accompanied by fourfold increase in the lifetimes of the entrapped complex. The temperature-dependent lifetimes reveal that silicate xerogels induce two competing thermally activated processes in the excited state decay of the immobilized complex. The excited state lifetimes of the doped bulk xerogels and the fibers coated with thin films containing Ru(bpy)32+ are virtually identical to those obtained for the fibers coated with additional gas-impermeable layers.

Materials scienceInorganic chemistryGeneral Physics and Astronomychemistry.chemical_elementSilicateRutheniumBipyridinechemistry.chemical_compoundchemistryChemical engineeringHypsochromic shiftFiberPhysical and Theoretical ChemistryThin filmAbsorption (chemistry)Sol-gelChemical Physics Letters
researchProduct

H2-TPR, XPS and TEM Study of the Reduction of Ru and Re promoted Co/γ-Al2O3, Co/TiO2 and Co/SiC Catalysts

2016

<p class="1Body">Effects of Ru and Re promoters on Co-CoO<sub>x </sub>catalysts supported on γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> and SiC were investigated to improve the understanding of the role of promoters of the active phase of Co-CoO<sub>x</sub>-Ru and Co-CoO<sub>x</sub>-Re. The influence of promoter addition on the composition and activity of the catalysts was characterized by several methods, such as H<sub>2</sub>-TPR, XPS, chemisorption and TEM. Furthermore, the role of support and metal-support interaction was especially studied and different support materials were compared.</p&g…

Materials scienceInorganic chemistryOxidechemistry.chemical_elementTPR010402 general chemistry01 natural sciencesChemical reactionFischer-TropschCatalysisMetalchemistry.chemical_compoundX-ray photoelectron spectroscopyXPSkobolttita116010405 organic chemistrycobalt0104 chemical sciencesRutheniumchemistryChemisorptiontemperature-programmed reductionvisual_artTEMvisual_art.visual_art_mediumCobaltcatalystJournal of Materials Science Research
researchProduct