Search results for "SANITARIA"
showing 10 items of 520 documents
Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures
2019
Abstract A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio ac…
Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses
2020
Abstract The biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied. The results demonstrated that the amount of biodegradable COD in the leachate was strictly dependent on the biomass that was used to perform the fractionation tests…
Integrated Fixed Film Activated Sludge (IFAS) membrane BioReactor: The influence of the operational parameters
2020
Abstract The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).
Assessing Methane Emission and Economic Viability of Energy Exploitation in a Typical Sicilian Municipal Solid Waste Landfill
2018
Sanitary landfills for municipal solid waste (MSW) represent one of the major anthropogenic source of GHGs emissions and are directly responsible of the climate changes we are facing nowadays. Indeed, the biodegradable organic matter of MSW undergoes anaerobic digestion producing the landfill gas (LFG), whose main components are CH4 and CO2. Therefore, biomethane energy exploitation in MSW landfills will reduce GHGs emission positively affecting the global warming. The aim of the present study was to assess the methane production in a Sicilian landfill by comparing the results from field measurements of methane emission and the estimates achieved by applying different mathematical models. A…
Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework
2021
International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…
Intermittent Aeration in a Hybrid Moving Bed Biofilm Reactor for Carbon and Nutrient Biological Removal
2020
The paper presents an experimental study on a lab scale hybrid moving bed biofilm reactor with intermittent aeration. Specifically, a comparison between two different operating conditions was analyzed: continuous and intermittent aeration. Both continuous and intermittent aeration were monitored and compared in order to get the best operational conditions. The intermittent aeration campaign was sub-divided in three phases with different duration of alternation of aerobic and anoxic times and organic and nitrogen loading rates. The efficiency of N-removal improved by 70% during the intermittent aeration. The best condition was observed with 40 min of aeration and 20 min of no-aeration, an or…
A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations
2018
The effects of salinity fluctuations on the activity of autochthonous halophilic bacteria in aerobic granular sludge (AGS) and flocculent activated sludge (FAS) reactors were investigated. The response of nitrifiers and denitrifiers activity to drastic and moderate salinity shocks in the short-term (ST) and long-term (LT) was examined. The BOD5removal efficiency decreased only in the reactors subjected to the drastic LT salinity increase. Nevertheless, stable performances were achieved 18 days after the shock in the AGS-R1 (90%), whereas after 27 days in the FAS-R1 (82%). The loss in nitritation efficiency was higher in the FAS reactors and was proportional to the shock intensity. Nitritati…
Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems
2016
Nowadays, sludge dewatering is one of the greatest operational cost to wastewater treatment cycle. Specifically, 1t of fresh sludge to be disposed is composed, on average, by 0.25 - 0.30t of suspended solids, with an average cost for treatment and disposal around 280 - 470 €/t of suspended solids. Despite several technologies have been developed with the focus to reduce also the specific sludge production, still mechanical dewatering represents a crucial step to limit the amount of sludge to be disposed. Many physical–chemical parameters influence the sludge dewaterability: floc structure, particle size, bound water content, surface charge and hydrophobicity, Extracellular Polymeric Substan…
The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity
2018
Abstract A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD⋅m −3 ⋅d −1 and a gradual increase of salinity (from 0.30 to 38 g NaCl − ⋅L −1 ) to promote a biological salt-adaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. Th…
The role of extracellular polymeric substances (EPS) on aerobic granules formation: comparison between a case of synthetic wastewater supply and anot…
2017
The paper focused on the evolution and the comparison of the extracellular polymeric substances (EPSs) content during the granulation process in two Granular Sequencing Batch Airlift Reactors (GSBAR) (3,5 L) fed with synthetic (R1) and industrial wastewater (R2). The results showed that in both the reactors the EPSs, in particular proteins (PN), were mainly produced during the feast phase because of the high substrate availability, especially under conditions of metabolic stress. Then, the EPSs content reduced during the famine period, because of biodegradation by bacteria. More in detail, during the granulation process, a greater polysaccharides (PS) consumption occurred in both reactors, …