Search results for "SBus"

showing 8 items of 8 documents

De novo synthesis of mesoporous photoactive titanium(IV)-organic frameworks with MIL-100 topology

2019

[EN] Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and secondary building units (SBUs) into targeted architectures. However, the development of new titanium-frameworks still remains limited by the difficulties in controlling the formation of persistent Ti-SBUs with predetermined directionality amenable to the isoreticular approach. Here we report the synthesis of a mesoporous Ti-MOF displaying a MIL-100 topology. MIL-100(Ti) combines excellent chemical stability and mesoporosity, intrinsic to this archetypical family of porous…

Materials science010405 organic chemistryQuímica organometàl·licachemistry.chemical_elementGeneral ChemistryMicroporous material010402 general chemistryTopology01 natural sciences0104 chemical sciencesQUIMICA ORGANICAchemistryChemical stabilitySBusMesoporous materialPorous mediumPorosityTopology (chemistry)Titanium
researchProduct

Reactivity of CuI and CuBr toward Et2S: a reinvestigation on the self-assembly of luminescent copper(I) coordination polymers.

2010

CuI reacts with SEt(2) in hexane to afford the known strongly luminescent 1D coordination polymer [(Et(2)S)(3){Cu(4)(mu(3)-I)(4)}](n) (1). Its X-ray structure has been redetermined at 115, 235, and 275 K in order to address the behavior of the cluster-centered emission and is built upon Cu(4)(mu(3)-I)(4) cubane-like clusters as secondary building units (SBUs), which are interconnected via bridging SEt(2) ligands. However, we could not reproduce the preparation of a coordination polymer with composition [(Et(2)S)(3){Cu(4)(mu(3)-Br)(4)}](n) as reported in Inorg. Chem. 1975, 14, 1667. In contrast, the autoassembly reaction of SEt(2) with CuBr results in the formation of a novel 1D coordination…

chemistry.chemical_classificationCoordination polymerInorganic chemistrychemistry.chemical_elementBridging ligandPolymerCrystal structureCopperInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryDensity functional theorySBusPhysical and Theoretical ChemistryLuminescenceInorganic chemistry
researchProduct

Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(II)-framework.

2015

A 3D cationic Zn(II) framework, based on Zn2(CO2)4 paddle-wheel secondary building units (SBUs) and Zn16(CO2)32 polyhedral supramolecular building blocks (SBBs), has been synthesized. At room temperature, the framework undergoes guest solvent triggered reversible structural transformation and concomitant Zn(II) to Cu(II) transmetalation in a single-crystal to single-crystal fashion.

Chemistryconcomitant transmetalationMetals and AlloysCationic polymerizationSupramolecular chemistryGeneral Chemistrystructural transformationPhotochemistrysingle crystalsCatalysisStructural transformationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventTransmetalationPolymer chemistryMaterials ChemistryCeramics and CompositesSBusSingle crystalta116Chemical communications (Cambridge, England)
researchProduct

Heterometallic Titanium–Organic Frameworks by Metal-Induced Dynamic Topological Transformations

2020

Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium–organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters. We describe an unprecedented methodology for the syn…

Solvothermal synthesischemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesMetalCrystalColloid and Surface ChemistrychemistryTransition metalChemical engineeringvisual_artvisual_art.visual_art_mediumSBusIsostructuralMesoporous materialTitaniumJournal of the American Chemical Society
researchProduct

Rational Synthesis of Chiral Metal-Organic Frameworks from Preformed Rodlike Secondary Building Units.

2017

The lack of rational design methodologies to obtain chiral rod-based MOFs is a current synthetic limitation that hampers further expansion of MOF chemistry. Here we report a metalloligand design strategy consisting of the use, for the first time, of preformed 1D rodlike SBUs (1) for the rational preparation of a chiral 3D MOF (2) exhibiting a rare eta net topology. The encoded chiral information on the enantiopure ligand is efficiently transmitted first to the preformed helical 1D building block and, in a second stage, to the resulting chiral 3D MOF. These results open new routes for the rational design of chiral rod-based MOFs, expanding the scope of these unique porous materials.

010405 organic chemistryLigandChemistryRational designNanotechnology010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesInorganic ChemistryEnantiopure drugMetal-organic frameworkSBusPhysical and Theoretical ChemistryTopology (chemistry)Inorganic chemistry
researchProduct

Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu I S and Cu I S Clusters to Luminescent Copper(I) Coordination Pol…

2015

The 1D coordination polymer (CP) [(Me2S)3{Cu2(μ-I)2}]n (1) is formed when CuI reacts with SMe2 in n-heptane, whereas in acetonitrile (MeCN), the reaction forms exclusively the 2D CP [(Me2S)3{Cu4(μ-I)4}]n (2) containing “flower-basket” Cu4I4 units. The reaction product of CuI with MeSEt is also solvent-dependent, where the 1D polymer [(MeSEt)2{Cu4(μ3-I)2(μ2-I)2}(MeCN)2]n (3) containing “stepped-cubane” Cu4I4 units is isolated in MeCN. In contrast, the reaction in n-heptane affords the 1D CP [(MeSEt)3{Cu4(μ3-I)4}]n (4) containing “closed-cubane” Cu4I4 clusters. The reaction of MeSPr with CuI provides the structurally related 1D CP [(MeSPr)3{Cu4(μ3-I)4}]n (5), for which the X-ray structure has…

chemistry.chemical_classificationStereochemistryCoordination polymerchemistry.chemical_elementPolymerCopperReaction productInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryReactivity (chemistry)SBusPhysical and Theoretical ChemistryAcetonitrileLuminescence
researchProduct

1,4-Bis(arylthio)but-2-enes as Assembling Ligands for (Cu2X2)n (X = I, Br; n = 1, 2) Coordination Polymers: Aryl Substitution, Olefin Configuration, …

2016

CuI reacts with E-PhS(CH2CH═CHCH2)SPh, L1, to afford the coordination polymer (CP) [Cu2I2{μ-E-PhS(CH2CH═CHCH2)SPh}2]n (1a). The unprecedented square-grid network of 1 is built upon alternating two-dimensional (2D) layers with an ABAB sequence and contains rhomboid Cu2(μ2-I)2 clusters as secondary building units (SBUs). Notably, layer A, interconnected by bridging L1 ligands, contains exclusively dinuclear units with short Cu···Cu separations [2.6485(7) A; 115 K]. In contrast, layer B exhibits Cu···Cu distances of 2.8133(8) A. The same network is observed when CuBr reacts with L1. In the 2D network of [Cu2Br2{μ-E-PhS(CH2CH═CHCH2)SPh}2]n (1b), isotype to 1a, one square-grid-type layer contain…

chemistry.chemical_classificationOlefin fiber010405 organic chemistryCoordination polymerStereochemistryArylHalideGeneral ChemistryPolymer010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryGeneral Materials ScienceSBusLuminescenceCurse of dimensionalityCrystal Growth & Design
researchProduct

A series of lanthanide(iii) metal-organic frameworks derived from a pyridyl-dicarboxylate ligand: single-molecule magnet behaviour and luminescence p…

2020

The reactions of LnIII ions with a versatile pyridyl-decorated dicarboxylic acid ligand lead to the formation of a series of novel three-dimensional (3D) Ln-MOFs, [Ln3(pta)4(Hpta)(H2O)]·xH2O (Ln = Dy (1), Eu (2), Gd (3), Tb (4), H2pta = 2-(4-pyridyl)-terephthalic acid, x = 6 for 1, 2.5 for 2, 1.5 for 3 and 2 for 4). The Ln3+ ions act as nine-coordinated muffin spheres, linking to each other to generate trinuclear {Ln3(OOC)6N2} SBUs, which are further extended to be interesting 3D topological architectures. To the best of our knowledge, the Dy-MOF exhibits zero-field single-molecule magnet (SMM) behaviour with the largest effective energy barrier among the previously reported 3D MOF-based Dy…

chemistry.chemical_classificationLanthanideMaterials science010405 organic chemistryLigand010402 general chemistry01 natural sciencesFluorescència0104 chemical sciencesInorganic ChemistryCrystallographyDicarboxylic acidchemistryAb initio quantum chemistry methodsElements químicsMetal-organic frameworkSingle-molecule magnetSBusLuminescence
researchProduct