Search results for "SCA"

showing 10 items of 23299 documents

Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

2017

A ring-shaped magnetic logic device offers two vortex states (clockwise and counterclockwise) to encode bits, with relative stability against external magnetic fields. The dynamics of magnetization switching in such structures, though, still need unraveling. The authors present direct experimental visualization of reproducible, robust switching in magnetic rings via domain-wall automotion, which does not require an applied field. Simulations reveal that annihilation of domain walls through automotion always occurs, with the detailed topology of the walls only influencing the dynamics locally, in line with the experimental results.

010302 applied physicsPhysicsField (physics)Condensed matter physicsMagnetic logicGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions01 natural sciencesVortexMagnetic fieldMagnetizationDomain wall (magnetism)Ferromagnetism0103 physical sciences010306 general physicsTopology (chemistry)Physical Review Applied
researchProduct

Multiscale model approach for magnetization dynamics simulations

2016

Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…

010302 applied physicsPhysicsMesoscopic physicsMagnetization dynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsScale (ratio)DiscretizationAttenuationFOS: Physical sciencesComputational Physics (physics.comp-ph)01 natural sciencesSpin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesStatistical physics010306 general physicsPhysics - Computational PhysicsNanoscopic scaleSpin-½Physical Review B
researchProduct

Scaling up electrically synchronized spin torque oscillator networks

2018

AbstractSynchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 millisecond…

010302 applied physicsPhysicsMultidisciplinaryPhased arrayOscillationlcsh:Rlcsh:Medicine02 engineering and technology021001 nanoscience & nanotechnologyTopology01 natural sciencesStability (probability)SynchronizationArticlePower (physics)Quality (physics)Neuromorphic engineering0103 physical scienceslcsh:Q0210 nano-technologylcsh:ScienceScalingScientific Reports
researchProduct

Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the Cu 2 ZnSnS 4 Absorber of Model Solar Cells

2021

The research has been supported by grant of the Ministry of Education and Science of the Republic of Kazakhstan AP09562784. The authors (D. Sergeyev) acknowledges the provision of SCAPS-1D software by Prof. Marc Burgelman. The research of A.I. Popov has been supported by the Institute of Solid State Physics (ISSP), University of Latvia (UL). ISSP UL as the Centre of Excellence is supported through the Framework Program for Euro-pean Universities Union Horizon 2020, H2020-WIDESPREAD-01–2016–2017-TeamingPhase2 under Grant Agreement No. 739508, CAMART2 project.

010302 applied physicsPhysicsQC1-99902 engineering and technology021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesjv-characteristicsoptical absorption coefficientsolar cellCu2ZnSnS4(CZTS)SCAPSJV-characteristics0103 physical sciencesdensity of states:NATURAL SCIENCES [Research Subject Categories]scaps0210 nano-technologycu2znsns4 (czts)Latvian Journal of Physics and Technical Sciences
researchProduct

2019

We present a design for producing precisely adjustable and alternating single-axis magnetic fields based on nested Halbach dipole pairs consisting of permanent magnets only. Our design allows for three dimensional optical and mechanical access to a region with strong adjustable dipolar fields, is compatible with systems operating under vacuum, and does not effectively dissipate heat under normal operational conditions. We present a theoretical analysis of the properties and capabilities of our design and construct a proof-of-concept prototype. Using our prototype, we demonstrate fields of up to several kilogauss with field homogeneities of better than 5%, which are harmonically modulated at…

010302 applied physicsPhysicsScale (ratio)Field (physics)AcousticsPolarimetryGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldGenerator (circuit theory)DipoleMagnet0103 physical sciences0210 nano-technologyVariable (mathematics)AIP Advances
researchProduct

Topological two-dimensional Su–Schrieffer–Heeger analog acoustic networks: Total reflection at corners and corner induced modes

2021

In this work, we investigate some aspects of an acoustic analogue of the two-dimensional Su-Schrieffer-Heeger model. The system is composed of alternating cross-section tubes connected in a square network, which in the limit of narrow tubes is described by a discrete model coinciding with the two-dimensional Su-Schrieffer-Heeger model. This model is known to host topological edge waves, and we develop a scattering theory to analyze how these waves scatter on edge structure changes. We show that these edge waves undergo a perfect reflection when scattering on a corner, incidentally leading to a new way of constructing corner modes. It is shown that reflection is high for a broad class of edg…

010302 applied physicsPhysics[PHYS]Physics [physics]Total internal reflectionWork (thermodynamics)Condensed Matter - Mesoscale and Nanoscale PhysicsScatteringGeneral Physics and AstronomyClassical Physics (physics.class-ph)FOS: Physical sciencesPhysics - Classical Physics02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyTopology01 natural sciencesSquare (algebra)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Reflection (physics)Limit (mathematics)Scattering theory0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Framework for complex quantum state generation and coherent control based on on-chip frequency combs

2018

Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.

010302 applied physicsQuantum opticsPhysicsbusiness.industryFiber (mathematics)Electronic Optical and Magnetic MaterialPhysics::OpticsSettore ING-INF/02 - Campi ElettromagneticiQuantum information processingSettore ING-INF/01 - Elettronica01 natural sciences010309 opticsMechanics of MaterialsCoherent controlQuantum state0103 physical sciencesScalabilitySilicon chipOptoelectronicsCoherent statesbusinessFrontiers in Optics / Laser Science
researchProduct

Formation of translucent nanostructured zirconia ceramics

2021

Abstract In this work the mechanisms that affect the optical transparency of nanostructured translucent ZrO2 ceramics are studied. The translucent ceramic samples were obtained from a low agglomeration nanosized powder at low pressure and low temperature sintering. Even low pressures cause structural changes and defect creation in the nanocrystals. Annealing was used to study the grain formation, structure and impact of defects. Significant changes in translucency were observed with increase in pore size. In order to further understand the defect creation, the obtained ceramics were doped with Er3+ ions and studied optically. Photoluminescence studies revealed a change in the ratio of green…

010302 applied physicsQuenchingMaterials sciencePhotoluminescenceScanning electron microscopeAnnealing (metallurgy)Sintering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesChemical engineeringTransmission electron microscopyvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCubic zirconiasense organsCeramic0210 nano-technologyJournal of the European Ceramic Society
researchProduct

Nanoscale Etching of GaAs and InP in Acidic H<sub>2</sub>O<sub>2</sub> Solution: A Striking Contrast in Kinetics and Surface …

2018

In this study of nanoscale etching for state-of-the-art device technology the importance of the nature of the surface oxide, is demonstrated for two III-V materials. Etching kinetics for GaAs and InP in acidic solutions of hydrogen peroxide are strikingly different. GaAs etches much faster, while the dependence of the etch rate on the H+ concentration differs markedly for the two semiconductors. Surface analysis techniques provided information on the surface composition after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin stoichiometric oxide that forms a blocking layer on InP. Reaction schemes are provided that allow one to understand the results, in particular…

010302 applied physicsReaction mechanismMaterials scienceKinetics02 engineering and technologyContrast (music)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsChemical engineeringEtching (microfabrication)0103 physical sciencesGeneral Materials Science0210 nano-technologyNanoscopic scaleSolid State Phenomena
researchProduct

Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)

2018

Abstract The monitoring of heat flux is becoming more and more critical for many materials and structures approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale and requires calibration. Here we report on a micro-hotplate device made of a platinum heater suspended on thin silicon nitride (SiN) membranes integrating specific features for SThM calibration. These heated reference samples can include a localized resistive temperature sensors (RTD) or standalone platinum membranes (typically 10 × 10 μm2) on which the temperature can be measured precisely. This functional area is dedicated to (1) estimate the th…

010302 applied physicsResistive touchscreenMaterials scienceFabricationbusiness.industryThermal resistanceMetals and Alloys02 engineering and technologyScanning thermal microscopy021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTemperature measurementSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOperating temperatureThermocouple0103 physical sciencesMicroscopyOptoelectronicsElectrical and Electronic Engineering0210 nano-technologybusinessInstrumentation
researchProduct