Search results for "SCS"

showing 10 items of 157 documents

CD133 as a target for colon cancer.

2012

INTRODUCTION: Recent evidence based on cancer stem cell (CSC) models, is boosting the progress of translational research and providing relevant clinical implications in many tumour types, including colorectal cancer. The current failure of standard therapies is attributed to a small fraction of the primary cell population with stem-like characteristics, such as self-renewal and differentiation. Identification of CSCs is based on two different criteria of selection: stemness-selective conditions and direct isolation based on putative stem cell markers expression. CD133, a transmembrane glycoprotein, was associated with tumor-initiating cells derived from several histological variants of tumo…

Oncologymedicine.medical_specialtyColorectal cancerClinical BiochemistryCellPopulationTranslational researchBiologyStem cell markerAntigenCancer stem cellAntigens CDInternal medicineDrug DiscoverymedicineTransmembrane glycoproteinAnimalsHumansAC133 AntigeneducationGlycoproteinsPharmacologyeducation.field_of_studymedicine.diseasemedicine.anatomical_structureCD133 colon carcinogenesis colorectal CSCs stemness markers.Neoplastic Stem CellsMolecular MedicineColorectal NeoplasmsPeptides
researchProduct

Solid film versus solution-phase charge-recombination dynamics of exTTF-bridge-C60 dyads.

2005

The charge-recombination dynamics of two exTTF-C 6 0 dyads (exTTF=9,10-bis(l,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C 6 0 ) moieties. In solution, photoexcitation of the nonconjugated dyad C 6 0 -BN-exTTF (1) (BN=1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C 6 0 -TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 μs, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad.…

Organic solar cellChemistryOrganic ChemistrySettore CHIM/06 - Chimica OrganicaGeneral ChemistryPhotochemistryAcceptorCatalysisDissociation (chemistry)PhotoexcitationPhotophysiscsElectron transferFullerenePhotoinduced charge separationSelf-assemblyRecombinationDonor-Acceptor ensemblesChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Human brain organoids assemble functionally integrated bilateral optic vesicles

2021

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progeni…

OrganogenesisInduced Pluripotent Stem Cellsretinal pigment epitheliumiPSCsEmbryonic DevelopmentBiology03 medical and health sciencesDiencephalonchemistry.chemical_compoundProsencephalon0302 clinical medicineGeneticsOrganoidmedicineHumansInduced pluripotent stem cell030304 developmental biology0303 health sciencesforebrain organoidsRetinal pigment epitheliumbrain organoidsVesicleprimordial eye fieldsOVB-organoidsCell DifferentiationRetinalCell BiologyOptic vesicleHuman brainCell biologyOrganoidsmedicine.anatomical_structurenervous systemchemistryMolecular MedicineFOXG1; OVB-organoids; brain organoids; forebrain organoids; iPSCs; optic vesicles; primary cilium; primordial eye fields; retinal pigment epitheliumoptic vesiclesFOXG1030217 neurology & neurosurgeryprimary ciliumCell Stem Cell
researchProduct

In vitro and in vivo investigations of osteogenic differentiation ability of dental pulp stem cells (DPSCs) and gingival mesenchymal stem cells (GMSC…

2020

Thanks to the use of human mesenchymal stem cells (hMSCs), smart biomaterials and active biomolecules, Regenerative Medicine (RM) and Bone Tissue Engineering (BTE) can restore structure and function of injured tissues. Among the different sources of hMSCs, the oro-facial hMSCs have promising in vitro and in vivo regeneration potential; in particular, dental pulp and gingiva are valuable sources of autologous hMSCs. The aim of this PhD thesis is testing the in vitro and in vivo bone regeneration ability of hMSCs isolated from dental pulp and inflamed gingiva of periodontally-compromised teeth, up to now considered biological waste tissues and discarded during surgical procedures, on two comm…

Periodontitis bone resorption oral MSCs DPSCs GMSCs waste biological tissues periodontally-compromised teeth FISIOGRAFT Bone Granular® Matriderm® autologous bone tissue regenerationSettore MED/28 - Malattie Odontostomatologiche
researchProduct

Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Ca…

2018

Here and for the first time, we show that the organometallic compound [Ru(&eta

Pharmaceutical Sciencecisplatin01 natural sciencesAnalytical ChemistrydendrimersCoordination ComplexesDrug DiscoveryMoietyplatinummetallitta116Molecular StructureChemistrymolekyylitnanomedicineNanomedicineChemistry (miscellaneous)MCF-7 CellsMolecular MedicineplatinaDendrimersEpithelial-Mesenchymal TransitionCell SurvivalAntineoplastic Agents.myrkyllisyys010402 general chemistryArticlecancer treatmentlcsh:QD241-441Faculdade de Ciências Exatas e da Engenharialcsh:Organic chemistryDendrimerCell Line TumorOrganometallic CompoundsHumansPhysical and Theoretical ChemistryrutheniumPlatinumCell ProliferationTumor microenvironmentCancer och onkologiToxicitynanocarrierssyöpähoidot010405 organic chemistryOrganic ChemistryMesenchymal stem celltoxicityMesenchymal Stem CellsCombinatorial chemistrykantasolutnanolääketiede0104 chemical scienceslääkkeetTumor progressionCell cultureDrug Resistance NeoplasmmetallodrugsCancer and OncologyCancer cellNanocarriersCaco-2 CellsDrug Screening Assays Antitumor<i>cisplatin</i>hMSCs
researchProduct

The long outburst of the black hole transient GRS 1716-249 observed in the X-ray and radio band

2018

We present the spectral and timing analysis of X-ray observations performed on the Galactic black hole transient GRS 1716-249 during the 2016-2017 outburst. The source was almost continuously observed with the Neil Gehrels Swift Observatory from December 2016 until October 2017. The X-ray hardness ratio and timing evolution indicate that the source approached the soft state three times during the outburst, even though it never reached the canonical soft spectral state. Thus, GRS 1716-249 increases the number of black hole transients showing outbursts with "failed" state transition. During the softening events, XRT and BAT broadband spectral modeling, performed with thermal Comptonization pl…

PhotonAstrophysics::High Energy Astrophysical Phenomenablack hole physicsFOS: Physical sciencesAstrophysicsCompact starX-rays: general01 natural sciencesRadio spectrumLuminositystars: jetsX-rays: binariesaccretionObservatory0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsRadiusaccretion discsBlack hole13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

Physics and Astronomy (miscellaneous)AstronomyGravitational wave detection Gravitational wave sources Gravitational waves Astronomical black holesagn discsAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldsstar-clustersgravitational waves black holesgravitational waves; black holesAGN DISCSgravitational waves; black holes; LIGO; Virgoblack holegeneral relativityLIGOgravitational waveQCQBPhysicsSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)GRAVITATIONAL WAVE-FORMSPROGENITORSCOMPACT BINARIESblack hole: spinPhysicsPERTURBATIONSgravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical PhenomenaMETALLICITYmass: asymmetrymetallicitydata analysis methodGeneral relativityMERGERSgr-qcAstrophysics::High Energy Astrophysical PhenomenamultipolePREDICTIONSFOS: Physical sciencesgravitational wavesblack holesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGravitational wavesGeneral Relativity and Quantum CosmologyTheory of relativityBinary black holeSettore FIS/05 - Astronomia e AstrofisicaAstronomical black holesbinary: coalescence0103 physical sciencesnumerical methodsddc:530STAR-CLUSTERS010306 general physicsnumerical calculationsSTFCAstrophysiqueGravitational wave sourcesScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKblack hole: massMass ratioblack holesLIGOEVOLUTIONgravitational radiation detectorBlack holedetector: sensitivityPhysics and Astronomyblack hole: binaryrelativity theorygravitational radiation: emissionmass ratioMultipole expansion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physics
researchProduct

Spectral Evolution of Scorpio X‐1 along its Color‐Color Diagram

2007

We analyze a large collection of RXTE archive data of the bright X‐ray source Scorpius X‐1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by selecting energy spectra from its Color‐Color Diagram. We model the spectra with the combination of two absorbed components: a soft thermal component, which can be interpreted as thermal emission from an accretion disk, and a hybrid Comptonization component, which self‐consistently includes the Fe Kα fluorescence line and the Compton reflected continuum. The presence of hard emission in Scorpius X‐1 has been previously reported, however, without a clear relation with the accreti…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)X-ray: generalCompton scatteringX-ray binaryColor–color diagramAstrophysicsindividual: Scorpio X-1; Stars: neutron stars; X-ray: general; X-ray: spectrum; X-ray: stars [Accretion discs; Stars]X-ray: spectrumAstronomical spectroscopySpectral lineStars: neutron starX-ray: starsAccretion discStars: individual: Scorpio X-1Astrophysics::Galaxy AstrophysicsLine (formation)AIP Conference Proceedings
researchProduct

Ab initiosimulations of accretion disc instability

2003

We show that accretion disks, both in the subcritical and supercritical accretion rate regime, may exhibit significant amplitude luminosity oscillations. The luminosity time behavior has been obtained by performing a set of time-dependent 2D SPH simulations of accretion disks with different values of alpha and accretion rate. In this study, to avoid any influence of the initial disk configuration, we produced the disks injecting matter from an outer edge far from the central object. The period of oscillations is 2 - 50 s respectively for the two cases, and the variation amplitude of the disc luminosity is 10^38 - 10^39 erg/s. An explanation of this luminosity behavior is proposed in terms o…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)black hole physicsAb initioFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRadiationAstrophysicsaccretion discsInstabilityLuminosityViscosityAmplitudeaccretionRadiation pressureinstabilitiesSpace and Planetary ScienceLimit cyclehydrodynamicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Binary evolution of PSR J1713+0747

2007

PSR J1713+0747 is a binary millisecond radio pulsar with a long orbital period (Porb ∼ 68 d) and a very low neutron star mass (M NS = 1.3 ± 0.2 M⊙). We simulate the evolution of this binary system with an accurate numerical code, which keeps into account both the evolution of the primary and of the whole binary system. We show that strong ejection of matter from the system is fundamental to obtain a mass at the end of the evolution that is within 1 - σ from the observed one, but propeller effects are almost negligible in such a system, where the accretion rate is always near to the Eddington limit. We show that there are indeed two mechanisms can account for the amount of mass loss from the…

PhysicsPulsars: individual: PSR J1713+0747close; Pulsars: individual: PSR J1713+0747; Relativity; Stars: neutron; X-rays: binaries [Accretion accretion discs; Binaries]X-ray binaryAstrophysicsBinary pulsarStars: neutronRelativityNeutron starsymbols.namesakeX-rays: binariesPulsarMillisecond pulsarBinaries: closeStellar mass lossEddington luminositysymbolsBinary systemAccretion accretion disc
researchProduct