Search results for "SHED"
showing 10 items of 289 documents
Entanglement in Gaussian matrix-product states
2006
Gaussian matrix product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of an harmonic chain. Replacing the projections by associated Gaussian states, the 'building blocks', we show that the entanglement range in translationally-invariant Gaussian matrix product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix…
Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization
2014
Topological order in a 2d quantum matter can be determined by the topological contribution to the entanglement R\'enyi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here we show how topological phase transitions in 2d systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks. Specifically, we present an efficient tensor network algorithm based on Projected Entangled Pair States to compute this quantity for a torus partitioned into cylinders, and then use this method to find sharp evidence of topological phase transitions in 2d systems with a string-tension perturbation…
Heat Capacity and Entanglement Measure in a simple two-qubit model
2011
A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wie\'sniak, Vedral and Brukner
Nonclassical correlations in superconducting circuits
2009
A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effect of their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted.
Thermal localizable entanglement in a simple multipartite system
2009
The quantum correlations present in a system of three coupled spins 12 in a thermal state are investigated. Localizable entanglement, as well as concurrence function, is exactly evaluated. The results obtained show the existence of a temperature range corresponding to which it is impossible to localize entanglement.
Entanglement and heat capacity in a two-atom Bose–Hubbard model
2012
Abstract We show that a two-atom Bose–Hubbard model exhibits three different phases in the behavior of thermal entanglement in its parameter space. These phases are demonstrated to be traceable back to the existence of level crossings in the ground state of the same system. Significant similarities between the behaviors of thermal entanglement and heat capacity in the parameter space are brought to light thus allowing to interpret the occurrence and the meaning of all these three phases.
Electromechanical properties of a disc‐type salient‐pole brushless DC motor with different pole numbers
2003
A brushless, permanent magnet, three‐phase disc‐type salient‐pole DC motor with co‐axial flux in the stator is considered. Electromechanical properties of a basic eight‐pole motor are compared with those for a 16‐pole one of the same volume, in order to contrast the two potential candidates for variable‐speed, low‐cost drives. As a basis of the comparative analysis, 3D FEM magnetic field modelling and circuit analysis considering an electronic commutator are employed. Increasing the number of poles results in unfavourable raising in the switching frequency. The eight‐pole motor construction has been shown in simulations to have higher efficiency and lower power losses than its 16‐pole count…
LES of the flow around two cylinders in tandem
2008
The flow around an arrangement of two-in-tandem cylinders exhibits a remarkably\ud complex behaviour that is of interest for many engineering problems, such as environmental\ud flows or structural design. In the present paper, a Large Eddy Simulation using a staggered\ud Cartesian grid has been performed for the flow around two-in-tandem cylinders of diameter\ud D=20mm and height H=50mm submerged in an open channel with height h=60 mm. The two\ud axes have a streamwise spacing of 2D. The Reynolds number is 1500, based on the cylinder\ud diameter and the free-stream velocity u�. The results obtained show that no vortex shedding\ud occurs in the gap between the two cylinders where the separat…
An Influence of Permanent Magnet Shape on the Torque Ripple of Disc-Type Brushless DC Motors
2006
An analysis of the torque developed by two types of the disc-type permanent magnet (PM), brushless DC motors: slotted torus motor and motor with stator salient poles is presented. The calculations were performed using three-dimensional finite element method (FEM). Two shapes of PMs are analyzed: trapezoidal and rectangular. The results show that application of rectangular shaped PMs provides significant reduction of the torque ripple in both considered motors.
Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem
2009
BACKGROUND: Since biological degradation processes are known to be a major driver of the natural attenuation of pesticide residues in the environment, microbial communities adapted to pesticide biodegradation are likely to play a key environmental role in reducing pesticide exposure in contaminated ecosystems. The aim of this study was to assess the diuron-mineralising potential of microbial communities at a small-scale watershed level, including a diuron-treated vineyard (pollution source), its associated grass buffer strip (as a river protection area against pesticide runoff) and the lotic receiver hydrosystem (sediments and epilithon), by using radiorespirometry. RESULTS: Comparison of r…