Search results for "SIMILARITY"

showing 10 items of 474 documents

Within-lake dynamics in the similarity of parasite assemblages of perch (Perca fluviatilis).

2005

Although parasite communities have been studied extensively in recent years, spatial and temporal variation in factors affecting the communities has received less attention. This paper examined the similarity of parasite assemblages of perch (Perca fluviatilis) in 18 locations within a single lake in relation to geographical distance and temporal dynamics in the host and parasite populations. We expected that in the present study-scale where distinct but potentially interacting host subpopulations could occur, similarity of the assemblages could be affected by seasonal dynamics in host movements particularly during the spawning period. Parasite species showed differences in infection levels…

Parasitic Diseases AnimalFresh WaterHost-Parasite InteractionsFish DiseasesSimilarity (network science)Geographical distancemedicineParasite hostingAnimalsBody SizeParasitesFinlandTeleosteiPerchbiologyEcologyHost (biology)Seasonalitymedicine.diseasebiology.organism_classificationInfectious DiseasesPercidaePerchesAnimal Science and ZoologyParasitologySeasonsParasitology
researchProduct

Generalized inverses and similarity to partial isometries

2010

Abstract We obtain some results related to the problems of Badea and Mbekhta (2005) [1] concerning the similarity to partial isometries using the generalized inverses. Especially, we involve the Moore–Penrose inverses. Also a characterization for such a similarity is given in the terms of dilations similar to unitary operators, which leads to a new criterion for the similarity to an isometry and to a quasinormal partial isometry.

Partial isometryPure mathematicsAluthge transformApplied MathematicsPartial isometryMoore–Penrose inverseCharacterization (mathematics)Unitary stateSimilarityAlgebraSimilarity (network science)IsometryUnitary dilationDuggal transformAnalysisMoore–Penrose pseudoinverseMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Estimators and confidence intervals of f2 using bootstrap methodology for the comparison of dissolution profiles

2021

Abstract Background and objectives: The most widely used method to compare dissolution profiles is the similarity factor f 2 . When this method is not applicable, the confidence interval of f 2 using bootstrap methodology has been recommended instead. As neither details of the estimator nor the types of confidence intervals are described in the guidelines, the suitability of five estimators and fourteen types of confidence intervals were investigated in this study by simulation. Methods: One million individual dissolution profiles were simulated for the reference and test populations with predefined target population f 2 values, where random samples of different sizes were drawn without rep…

PercentileSimilarity (network science)Sample size determinationStatisticsStatistical inferenceEstimatorHealth InformaticsPoint estimationExpected valueSoftwareConfidence intervalComputer Science ApplicationsMathematicsComputer Methods and Programs in Biomedicine
researchProduct

Comparison of free software platforms for the calculation of the 90% confidence interval of f2 similarity factor by bootstrap analysis

2020

Abstract Introduction The calculation of the 90% confidence interval of f2 based on the bootstrap methodology has been proposed and accepted by the main regulatory authorities when the dissolution data shows excessive variability. Different free software platforms allow the calculation of the 90% CI of f2 by means of bootstrapping. Their use in regulatory submissions is growing, but divergent results have been observed between the available software platforms. Therefore, the objective of this work is to analyze the characteristics of these software platforms and evaluate their results. Methods and materials Highly variable in vitro dissolution data from two products were selected. Three dif…

Percentilebusiness.industryPharmaceutical ScienceValue (computer science)02 engineering and technology021001 nanoscience & nanotechnology030226 pharmacology & pharmacyConfidence interval03 medical and health sciencesVariable (computer science)0302 clinical medicineSoftwareBootstrapping (electronics)Similarity (network science)StatisticsTruncation (statistics)0210 nano-technologybusinessMathematicsEuropean Journal of Pharmaceutical Sciences
researchProduct

Genetic Normalized Convolution

2011

Normalized convolution techniques operate on very few samples of a given digital signal and add missing information, trough spatial interpolation. From a practical viewpoint, they make use of data really available and approximate the assumed values of the missing information. The quality of the final result is generally better than that obtained by traditional filling methods as, for example, bilinear or bicubic interpolations. Usually, the position of the samples is assumed to be random and due to transmission errors of the signal. Vice versa, we want to apply normalized convolution to compress data. In this case, we need to arrange a higher density of samples in proximity of zones which c…

Phase congruencyCorrectnessSettore INF/01 - InformaticaPosition (vector)Genetic algorithmGenetic Algorithms Normalized Convolution Symmetry Transform Structural Similarity Metrics Phase CongruencyBicubic interpolationBilinear interpolationDigital signal (signal processing)AlgorithmMathematicsMultivariate interpolation
researchProduct

Argumentation in Mathematics

2013

In The Uses of Argument, Stephen Toulmin (1958) introduced a model of argumentation, in which what may be called the ‘layout of arguments’ is represented. This model has become a classic in argumentation theory and has been used in the analysis, evaluation and construction of arguments. Toulmin’s main thesis is that, in principle, one can make a claim of rationality for any type of argument, and that the criterion of validity depends on the nature of the problem in question. He rejects the idea of universal norms for evaluation of argumentation and that formal logic provides these norms. There is an essential difference between the norms which are relevant to the evaluation of everyday argu…

Philosophy of mathematicsArgumentSimilarity (psychology)RationalityType (model theory)Argumentation theoryEpistemology
researchProduct

Self-similarity and scaling of thermal shock fractures

2013

The problem of crack pattern formation due to thermal shock loading at the surface of half-space is solved numerically using two-dimensional boundary element method. The results of numerical simulations with 100-200 random simultaneously growing and interacting cracks are used to obtain scaling relations for crack length and spacing. The numerical results predict that such process of pattern formation with quasi-static crack growth is not stable and at some point the excess energy leads to unstable propagation of one of the longest crack. The onset of instability has also been determined from numerical results.

PhysicsCondensed Matter - Materials ScienceThermal shockSelf-similaritySurface PropertiesTemperatureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPattern formationMechanicsCondensed Matter - Soft Condensed MatterHalf-spacePhysics::Classical PhysicsInstabilityPhysics::GeophysicsCondensed Matter::Materials ScienceSoft Condensed Matter (cond-mat.soft)Stress MechanicalScalingBoundary element methodQuasistatic processMechanical PhenomenaPhysical Review E
researchProduct

Mode coupling theory for molecular liquids: What can we learn from a system of hard ellipsoids?

1999

Molecular fluids show rich and complicated dynamics close to the glass transition. Some of these observations are related to the fact that translational and orientational degrees of freedom couple in nontrivial ways. A model system which can serve as a paradigm to understand these couplings is a system of hard ellipsoids of revolution. To test this we compare at the ideal glass transition the static molecular correlators of a linear A-B Lennard-Jones molecule obtained from a molecular dynamics simulation with a selected fluid of hard ellipsoids for which the static correlators have been obtained using Percus-Yevick theory. We also demonstrate that the critical non-ergodicity parameters obta…

PhysicsIdeal (set theory)Similarity (geometry)General Chemical EngineeringDegrees of freedom (physics and chemistry)FOS: Physical sciencesGeneral Physics and AstronomyCondensed Matter - Soft Condensed MatterAspect ratio (image)EllipsoidCondensed Matter::Soft Condensed MatterMolecular dynamicsClassical mechanicsMode couplingSoft Condensed Matter (cond-mat.soft)Glass transitionPhilosophical Magazine B
researchProduct

Unrestricted shapes of light nuclei in the local-density approximation: Comparison with jellium clusters

1995

Abstract The shapes of light nuclei are studied within density-functional theory. The Kohn-Sham method and the local-density approximation are used. No symmetry restrictions are imposed. A parallel study is made of monovalent atomic clusters described on the jellium model. The shapes obtained for nuclei with Z = N = 2–22 show a striking similarity to those of atomic clusters of an equal number of valence electrons. Moments of inertia, when suitably normalized, are virtually identical. The calculated nuclear quadrupole moments are found insensitive to the effective interaction and in good agreement with experiment. Similar shape coexistence is established in both systems.

PhysicsNuclear and High Energy PhysicsLight nucleusSimilarity (geometry)QuadrupoleJelliumPhysics::Atomic and Molecular ClustersAtomic physicsMoment of inertiaLocal-density approximationValence electronSymmetry (physics)Nuclear PhysicsNuclear Physics A
researchProduct

Coordinate representation for non Hermitian position and momentum operators

2017

In this paper we undertake an analysis of the eigenstates of two non self-adjoint operators $\hat q$ and $\hat p$ similar, in a suitable sense, to the self-adjoint position and momentum operators $\hat q_0$ and $\hat p_0$ usually adopted in ordinary quantum mechanics. In particular we discuss conditions for these eigenstates to be {\em biorthogonal distributions}, and we discuss few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with $\hat q$ and $\hat p$, based …

PhysicsQuantum PhysicsSimilarity (geometry)010308 nuclear & particles physicsGeneral MathematicsGeneral EngineeringFOS: Physical sciencesGeneral Physics and AstronomyInverseMathematical Physics (math-ph)01 natural sciencesHermitian matrixMomentumPosition (vector)Settore MAT/05 - Analisi MatematicaBounded functionBiorthogonal system0103 physical sciencesposition operators generalized eigenvectors quasi*-algebrasQuantum Physics (quant-ph)010306 general physicsSettore MAT/07 - Fisica MatematicaEigenvalues and eigenvectorsMathematical PhysicsMathematical physics
researchProduct