Search results for "SINGLET"

showing 10 items of 352 documents

VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

2015

Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\Sigma^+_u \rightarrow X^1\Sigma^+_g$) and molecular continuum ($a^3\Sigma^+_g \rightarrow b^3\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-f…

Materials scienceFOS: Physical sciencesPlasmaCondensed Matter Physics01 natural sciencesDissociation (chemistry)Physics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Electric arcPhysics::Plasma PhysicsIonizationMetastability0103 physical sciencesMoleculeSinglet stateAtomic physics010306 general physicsElectron ionization
researchProduct

Polymorph acceptor-based triads with photoinduced TADF for UV sensing

2021

Abstract In contrast to many donor–acceptor type organic luminophores exhibiting thermally activated delayed fluorescence (TADF), two deep blue TADF emitters designed in this work contain only typical electron accepting moieties with different electron accepting abilities. Derivatives of benzophenone and diphenylsulfone substituted with phenothiazine-5,5-dioxide donor moieties were synthesized and studied. In addition to the TADF, green to blue emission color switching and strong fluorescence intensity enhancement by more than 60 times was detected for THF solution of the derivative of phenothiazine-5,5-dioxide and benzophenone under increase of UV excitation dose. We proved by a variety of…

Materials scienceGeneral Chemical EngineeringGeneral ChemistryPhotochemistryAcceptorFluorescenceTolueneIndustrial and Manufacturing Engineeringchemistry.chemical_compoundchemistryBenzophenoneEnvironmental ChemistrySinglet stateNaked eyeConformational isomerismExcitationChemical Engineering Journal
researchProduct

CF3 Substitution of [Cu(P^P)(bpy)][PF6 ] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance

2018

Herein, [Cu(P^P)(N^N)][PF6 ] complexes (P^P=bis[2-(diphenylphosphino)phenyl]ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos); N^N=CF3 -substituted 2,2'-bipyridines (6,6'-(CF3 )2 bpy, 6-CF3 bpy, 5,5'-(CF3 )2 bpy, 4,4'-(CF3 )2 bpy, 6,6'-Me2 -4,4'-(CF3 )2 bpy)) are reported. The effects of CF3 substitution on their structure as well as their electrochemical and photophysical properties are also presented. The HOMO-LUMO gap was tuned by the N^N ligand; the largest redshift in the metal-to-ligand charge transfer (MLCT) band was for [Cu(P^P){5,5'-(CF3 )2 bpy}][PF6 ]. In solution, the compounds are weak yellow to red emitters. The emission properties depend on the substitu…

Materials sciencePhotoluminescenceLigandXantphosQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryExcited stateSinglet stateLight-emitting electrochemical cell0210 nano-technologyTetrahydrofuranChemPlusChem
researchProduct

Fe3O4@Au@mSiO2 as an enhancing nanoplatform for Rose Bengal photodynamic activity

2017

A novel nanoplatform composed of three types of materials with different functionalities, specifically core-shell Fe3O4@Au nanoparticles encapsulated near the outer surface of mesoporous silica (mSiO2) nanoparticles, has been successfully synthesised and used to enhance the efficiency of a photosensitiser, namely Rose Bengal, in singlet oxygen generation. Fe3O4 is responsible for the unusual location of the Fe3O4@Au nanoparticle, while the plasmonic shell acts as an optical antenna. In addition, the mesoporous silica matrix firmly encapsulates Rose Bengal by chemical bonding inside the pores, thus guaranteeing its photostability, and in turn making the nanosystem biocompatible. Moreover, th…

Materials scienceRose-BengalSinglet-OxygenNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciences//purl.org/becyt/ford/1 [https]chemistry.chemical_compoundOptical antennaOn demandRose bengal//purl.org/becyt/ford/1.4 [https]General Materials ScienceSinglet oxygenOtras Ciencias QuímicasNanoplataformCiencias QuímicasMesoporous silica021001 nanoscience & nanotechnologyBiocompatible material0104 chemical scienceschemistry0210 nano-technologyCIENCIAS NATURALES Y EXACTAS
researchProduct

NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death

2020

We report the preparation of water-dispersible, ca. 30 nm-sized nanohybrids containing NaYF4:Er3+, Yb3+ up-conversion nanoparticles (UCNPs), capped with a polyethylene glycol (PEG) derivative and highly loaded with a singlet oxygen photosensitizer, specifically a diiodo-substituted Bodipy (IBDP). The photosensitizer, bearing a carboxylic group, was anchored to the UCNP surface and, at the same time, embedded in the PEG capping; the combined action of the UCNP surface and PEG facilitated the loading for an effective energy transfer and, additionally, avoided photosensitizer leaching from the nanohybrid (UCNP-IBDP@PEG). The effectiveness of the nanohybrids in generating singlet oxygen after n…

Materials scienceSinglet oxygentechnology industry and agricultureBiomedical Engineeringchemistry.chemical_elementNanoparticleGeneral ChemistryGeneral MedicinePolyethylene glycolPhotochemistryOxygenPhoton upconversionchemistry.chemical_compoundchemistryPEG ratioGeneral Materials SciencePhotosensitizerBODIPYJ. Mater. Chem. B
researchProduct

Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study

2020

Abstract The Fe(II) spin state in the condensed phase of [Fe(II)Cl2(tpm)] (tpm = [tris(pyrazol-1-yl)methane]; 1) catalyst has been determined through a combined experimental and theoretical investigation of X-Ray Absorption Spectroscopy (XAS) at the FeL2,3-edges and NK-edge. Results indicated that in this phase a mixed singlet/triplet state is plausible. These results have been compared with the already know Fe singlet spin state of the same complex in water solution. A detailed analysis of the electronic structure and bonding mechanism of the catalyst showed that the preference for the low-spin diamagnetic ground state, strongly depends upon the ligands, the bulk solvent and the interactio…

Materials scienceSpin statesDFT calculationHomogeneous catalysis02 engineering and technologyElectronic structure010402 general chemistryDFT calculations01 natural sciencesCatalysisSinglet stateTriplet stateDFT calculations.HOMO/LUMOX-ray absorption spectroscopyC-scorpionate catalystX-ray absorption spectroscopyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSpin statesC-scorpionate catalyst; DFT calculations; Spin states; X-ray absorption spectroscopySpin statePhysical chemistry0210 nano-technologyGround state
researchProduct

Hyperpolarization of cis ‐ 15 N 2 ‐Azobenzene by Parahydrogen at Ultralow Magnetic Fields**

2021

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suit…

Materials scienceSpin statesSpinsSpin polarization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpin isomers of hydrogen01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciences3. Good healthchemistry.chemical_compoundMagnetizationAzobenzenechemistryHyperpolarization (physics)Singlet statePhysical and Theoretical ChemistryAtomic physics0210 nano-technologyChemPhysChem
researchProduct

Anomalous Spin Transition Observed in Bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) Thiocyanate Dihydrate

2003

Bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) thiocyanate dihydrate undergoes a two-step singlet (1A1) ⇄ quintet (5T2) transition in which both steps are associated with thermal hysteresis. Thermal cycling of the sample results in its conversion to a second phase which displays a single-step transition with a very narrow hysteresis loop. This second phase slowly reverts to the initial phase on standing at 300 K. The interconversions are completely reversible. The spin state changes have been monitored by measurement of magnetism and Mossbauer spectra and by differential scanning calorimetry (DSC) studies.

Materials scienceSpin statesThiocyanateInorganic chemistrySpin transitionCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundCrystallographyDifferential scanning calorimetrychemistryPhase (matter)Mössbauer spectroscopyPyridineElectrochemistrySinglet stateAdvanced Functional Materials
researchProduct

Adducts of free-base meso-tetraarylporphyrins with trihaloacetic acids: Structure and photostability

2020

Abstract Four diverse meso-tetraarylporphyrins in the form of diprotonated adducts with trifluoro-, trichloro-, tribromoacetic acids and acetic acid were investigated in benzene solution. Despite similar structural distortion of the chromophore system due to protonation, the respective adducts demonstrated different photostability when exposed to UV irradiation. The trifluoro- and trichloroacetic adducts, and the acetic acid one, showed some common features both molecular and in the mechanism of photodegradation. However, the tribromo-derivative decayed according to a different kinetic scheme, revealing a considerable impact of the bromine atoms upon the pyrrole units of the porphyrin macro…

Meso-tetraarylporphyrinsSinglet oxygenGeneral Chemical EngineeringGeneral Physics and AstronomyFree baseProtonation02 engineering and technologyGeneral ChemistryChromophore010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryDFT calculations01 natural sciencesPorphyrinTrihaloacetic acids0104 chemical sciencesAdductPorphyrin protonationchemistry.chemical_compoundAcetic acidchemistry0210 nano-technologyPhotodegradationPyrroleJournal of Photochemistry and Photobiology A-Chemistry
researchProduct

Singlet and triplet energy transfer rate acceleration by additions of clusters in supramolecular pigment-organometallic cluster assemblies

2011

Both S(1) and T(1) energy transfer rates (porphyrin → cluster) increase from mono- to di- to tetracarboxylate[tetraphenyl-(zinc)porphyrin] adducts with [Pd(3)(dppm)(3)(CO)](2+) clusters.

Metals and AlloysSupramolecular chemistrychemistry.chemical_elementGeneral ChemistryZincPhotochemistryPorphyrinCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAdductchemistry.chemical_compoundPigmentchemistryvisual_artMaterials ChemistryCeramics and CompositesCluster (physics)visual_art.visual_art_mediumSinglet stateEnergy transfer rateChemical Communications
researchProduct