Search results for "SOLITON"
showing 10 items of 534 documents
Dipole soliton solution for the homogeneous high-order nonlinear Schrödinger equation with cubic–quintic–septic non-Kerr terms
2015
Abstract We consider a high-order nonlinear Schrodinger equation with third- and fourth-order dispersions, cubic–quintic–septic nonlinearities, self-steepening, and instantaneous Raman response. This equation models describes ultra-short optical pulse propagation in highly-nonlinear media. The ansatz solution of Choudhuri and Porsezian (in Ref. [16]) is adapted to investigate solutions composed of the product of bright and dark solitary waves. Parametric conditions for the existence of the derived soliton solutions are given and their stabilities are numerically discussed. These exact solutions provide insight into balance mechanisms between several high-order nonlinearities of different na…
Generation of High-Repetition-Rate Dark Soliton Trains and Frequency Conversion in Optical Fibers
1998
Induced modurational polarization instability in birefringent fibers leads to trains of dark soliton-like pulses. Optimal large-signal cw and soliton frequency conversion is also analysed.
Manakov Polarization Modulation Instability in Normal Dispersion Optical Fiber
2014
We observed polarization modulation instability in the normal dispersion regime of randomly birefringent multi-km telecom optical fiber. The instability is pumped by two wavelength multiplexed and orthogonally polarized intense continuous lasers.
Bistable phase locking of a nonlinear optical cavity via rocking: Transmuting vortices into phase patterns.
2006
We report experimental observation of the conversion of a phase-invariant nonlinear system into a phase-locked one via the mechanism of rocking [G. J. de Valcarcel and K. Staliunas, Phys. Rev. E 67, 026604 (2003)]. This conversion results in that vortices of the phase-invariant system are being replaced by phase patterns such as domain walls. The experiment is carried out on a photorefractive oscillator in two-wave mixing configuration.A model for the experimental device is given that reproduces the observed behavior.
Ultrasonic cavity solitons
2007
We report on a new type of localized structure, an ultrasonic cavity soliton, supported by large aspect-ratio acoustic resonators containing viscous media. These states of the acoustic and thermal fields are robust structures, existing whenever a spatially uniform solution and a periodic pattern coexist. Direct proof of their existence is given both through the numerical integration of the model and through the analysis and numerical integration of a generalized Swift-Hohenberg equation, derived from the microscopic equations under conditions close to nascent bistability. An analytical solution for the ultrasonic cavity soliton is given.
Phase-bistable Kerr cavity solitons and patterns
2013
We study pattern formation in a passive nonlinear optical cavity on the basis of the classic Lugiato-Lefever model with a periodically modulated injection. When the injection amplitude sign alternates, e.g., following a sinusoidal modulation in time or in space, a phase-bistable response emerges, which is at the root of the spatial pattern formation in the system. An asymptotic description is given in terms of a damped nonlinear Schr\"odinger equation with parametric amplification, which allows gaining insight into the basic spatiotemporal dynamics of the system. One- and two-dimensional phase-bistable spatial patterns, such as bright and dark-ring cavity solitons and labyrinths, are demons…
Hydrodynamics of periodic breathers
2014
We report the first experimental observation of periodic breathers in water waves. One of them is Kuznetsov–Ma soliton and another one is Akhmediev breather. Each of them is a localized solution of the nonlinear Schrödinger equation (NLS) on a constant background. The difference is in localization which is either in time or in space. The experiments conducted in a water wave flume show results that are in good agreement with the NLS theory. Basic features of the breathers that include the maximal amplitudes and spectra are consistent with the theoretical predictions.
Tenth Peregrine breather solution to the NLS equation
2015
We go on in this paper, in the study of the solutions of the focusing NLS equation. With a new representation given in a preceding paper, a very compact formulation without limit as a quotient of two determinants, we construct the Peregrine breather of order N=10. The explicit analytical expression of the Akhmediev's solution is completely given.
Two-dimensional mobile breather scattering in a hexagonal crystal lattice.
2021
We describe the full two-dimensional scattering of long-lived breathers in a model hexagonal lattice of atoms. The chosen system, representing an idealized model of mica, combines a Lennard-Jones interatomic potential with an “egg-box” harmonic potential well surface. We investigate the dependence of breather properties on the ratio of the well depths associated with the interaction and on-site potentials. High values of this ratio lead to large spatial displacements in adjacent chains of atoms and thus enhance the two-dimensional character of the quasi-one-dimensional breather solutions. This effect is further investigated during breather-breather collisions by following the constrained en…
All-optical discrete vortex switch
2011
We introduce discrete vortex solitons and vortex breathers in circular arrays of nonlinear waveguides. The simplest vortex breather in a four-waveguide coupler is a nonlinear dynamic state changing its topological charge between $+1$ and $\ensuremath{-}1$ periodically during propagation. We find the stability domain for this solution and suggest an all-optical vortex switching scheme.