Search results for "SOLITON"
showing 4 items of 534 documents
NONLINEAR OPTICS Nonlinear virtues of multimode fibre
2015
The finding that multimode optical bres support a rich and complex mix of spatial and temporal nonlinear phenomena could yield a plethora of promising applications.
PROPAGATING INTERFACES IN A TWO-LAYER BISTABLE NEURAL NETWORK
2006
The dynamics of propagating interfaces in a bistable neural network is investigated. We consider the network composed of two coupled 1D lattices and assume that they interact in a local spatial point (pin contact). The network unit is modeled by the FitzHugh–Nagumo-like system in a bistable oscillator mode. The interfaces describe the transition of the network units from the rest (unexcited) state to the excited state where each unit exhibits periodic sequences of excitation pulses or action potentials. We show how the localized inter-layer interaction provides an "excitatory" or "inhibitory" action to the oscillatory activity. In particular, we describe the interface propagation failure a…
Pinning of a kink in a nonlinear diffusive medium with a geometrical bifurcation: Theory and experiments
2004
International audience; We study the dynamics of a kink propagating in a Nagumo chain presenting a geometrical bifurcation. In the case of weak couplings, we define analytically and numerically the coupling conditions leading to the pinning of the kink at the bifurcation site. Moreover, real experiments using a nonlinear electrical lattice confirm the theoretical and numerical predictions.
High precision numerical approach for Davey–Stewartson II type equations for Schwartz class initial data
2020
We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equa- tions, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll’s composite Runge–Kutta method for the time dependence. Since DS equations are non-local, nonlinear Schrödinger equations with a singular symbol for the non-locality, standard Fourier methods in practice only reach accuracy of the order of 10−6or less for typical examples. This was previously demonstrated for the defocusing integrable case by comparison with a numerical approach for …