Search results for "SOLITON"
showing 10 items of 534 documents
Testing the Outflow Process over a Triangular Labyrinth Weir
2017
In this paper, the dimensionless stage-discharge relation for a sharp-crested triangular labyrinth weir, determined in a previous study, is initially tested by some experimental runs carried out in a laboratory flume. According to this relationship, the flow magnification is affected by the length-magnification ratio and the head to one cycle width ratio. The measurements allowed to test the applicability of this dimensionless relation for different values of both the angle of the sidewall to the main flow direction and the weir height. Finally, the proposed dimensionless equation was also tested by using experimental measurements carried out for broad-crested triangular labyrinth weir.
L'identité de Fay en théorie des systèmes intégrables
2011
Fay's identity on Riemann surfaces is a powerful tool in the context of algebro-geometric solutions to integrable equations. This relation generalizes a well-known identity for the cross-ratio function in the complex plane. It allows to establish relations between theta functions and their derivatives. This offers a complementary approach to algebro-geometric solutions of integrable equations with certain advantages with respect to the use of Baker-Akhiezer functions. It has been successfully applied by Mumford et al. to the Korteweg-de Vries, Kadomtsev-Petviashvili and sine-Gordon equations. Following this approach, we construct algebro-geometric solutions to the Camassa-Holm and Dym type …
Optical Soliton Molecules in Fiber Lasers
2006
Recent experiments demonstrate that fiber laser cavities are able to support various multisoliton complexes, analogous to soliton molecules, which could have impact on optical information transmission or storage. These advances are guided by the concept of dissipative soliton.
Incoherent solitons and condensation processes
2006
International audience; We study the nonlinear interaction of partially incoherent nonlinear optical waves. We show that, in spite of the incoherence of the waves, coherent phase effects may play a relevant role during the propagation, in contrast with the usual wave turbulence description of the interaction. These nonlinear phase effects may lead the system to unexpected processes of self-organization, such as condensation, or incoherent soliton generation in instantaneous response nonlinear media. Such self-organization processes may be characterized by a reduction of the non-equilibrium entropy, which violates the Boltzmann's H-theorem of entropy growth inherent to the wave turbulence th…
Spectral dependence of purely-Kerr driven filamentation in air and argon
2010
5 pags, 4 figs.-- PACS number(s): 42.65.Jx, 42.65.Tg, 78.20.Ci. -- Publisher error corrected 27 September 2010, Erratum Phys. Rev. A 82, 039905 (2010): https://doi.org/10.1103/PhysRevA.82.033826
GROUP ANALYSIS AND SOME EXACT SOLUTIONS FOR THE THERMAL BOUNDARY LAYER
2006
We perform the group analysis of the thermal boundary layer in laminar flow. We obtain the classification of the solutions in terms of the asymptotic velocity. Some solutions of the boundary layer equations, for some distributions of outer flow velocity, are obtained also.
Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation
2019
We investigate a new configuration of a mode-locked fiber laser by using a nonlinear polarization rotation-based design to generate soliton pulses with low repetition rate. Unlike with previously reported configurations, we introduce a Faraday mirror after the first half of the cavity length to counteract the nonlinear polarization rotation effects. The total cavity length is 437 m including a 400-m long twisted SMF-28 fiber. The fiber was twisted to cancel the linear birefringence and to ensure that the polarization ellipticity is not altered as the pulse travels along the fiber. The strict control of polarization yields a stable relation between the polarization state of the pulses propag…
Analysis of soliton dynamics and noise induced effects on the superconductive lifetime in long Josephson junctions.
2013
The influence of various noise sources on the transient dynamics of long Josephson junctions (LJJ) is investigated in the presence of an oscillating bias current signal and a noise source with Gaussian or non-Gaussian (i.e. Cauchy-Lorentz or Lévy-Smirnov) probability distributions. These systems are computationally analyzed integrating the perturbed Sine-Gordon equation describing the phase evolution. We found evidence of noise induced effects on trends of the mean escape time (MET) from the superconductive metastable state, varying different system parameters, as the bias frequency, noise intensity and junction length. In particular, we find resonant activation (RA) and noise enhanced stab…
Transient dynamics in driven long Josephson junctions.
2013
The switching time from the superconductive metastable state of a long Josephson junction (LJJ)[1] is computationally analyzed in the framework of the perturbed sine-Gordon equation. The model includes an external bias current term and a stochastic noise source, i.e. a Lévy noise term. The effects of this noise on the mean escape time (MET) from the superconductive state are analyzed. The investigation is performed by considering a wide range of values of system parameters and different noise statistics: Gaussian, Cauchy-Lorentz and Lévy-Smirnov[2]. We found evidence of well known noise induced phenomena on the MET behavior, that is the noise enhanced stability (NES) and resonant activation…
Toward a wave turbulence formulation of statistical nonlinear optics
2012
International audience; During this last decade, several remarkable phenomena inherent to the nonlinear propagation of incoherent optical waves have been reported in the literature. This article is aimed at providing a generalized wave turbulence kinetic formulation of random nonlinear waves governed by the nonlinear Schrodinger equation in the presence of a nonlocal or a noninstantaneous nonlinear response function. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are obtained. In the spatial domain, when the incoherent wave exhibits fluctuatio…