Search results for "SPIN RELAXATION"
showing 10 items of 39 documents
High-field nuclear spin relaxation in liquids and solids
1990
The authors generalise the standard theory of nuclear spin relaxation to situations in which the Markovian approximation is not applicable. Expressions for generalised frequency-dependent spin relaxation functions are presented. They show that under high-field conditions the relaxation of longitudinal magnetisation is exponential independent of the particular time dependence of the correlation functions.
Finite-frequency spin susceptibility and spin pumping in superconductors with spin-orbit relaxation
2020
Static spin susceptibility of superconductors with spin-orbit relaxation has been calculated in the seminal work of A.A. Abrikosov and L.P. Gor'kov [Sov. Phys. JETP, {\bf 15}, 752 (1962)]. Surprisingly the generalization of this result to finite frequencies has not been done despite being quite important for the modern topic of superconducting spintronics. The present paper fills this gap by deriving the analytical expression for spin susceptibility. The time-dependent spin response is shown to be captured by the quasiclassical Eilenberger equation with collision integrals corresponding to the ordinary and spin-orbit scattering. Using the developed formalism we study the linear spin pumping…
Enhancement of electron spin lifetime in GaAs crystals: the benefits of dichotomous noise
2013
The electron spin relaxation process in n-type GaAs crystals driven by a fluctuating electric field is investigated. Two different sources of fluctuations are considered: (i) a symmetric dichotomous noise and (ii) a Gaussian correlated noise. Monte Carlo numerical simulations show, in both cases, an enhancement of the spin relaxation time by increasing the amplitude of the external noise. Moreover, we find that the electron spin lifetime versus the noise correlation time: (i) increases up to a plateau in the case of dichotomous random fluctuations, and (ii) shows a nonmonotonic behaviour with a maximum in the case of bulks subjected to a Gaussian correlated noise.
Monte Carlo Simulation of Electron Dynamics in Doped Semiconductors Driven by Electric Fields: Harmonic Generation, Hot-Carrier Noise and Spin Relaxa…
2011
In solid state electronics the miniaturization of integrated circuits implies that, even at moderate applied voltages, the components can be exposed to very intense electric fields. Advances in electronics push the devices to operate also under cyclostationary conditions, i.e. under large-signal and time-periodic conditions. A main consequence of this fact is that circuits exhibit a strongly nonlinear behavior. Furthermore, semiconductor based devices are always imbedded into a noisy environment that could strongly affect their performance, setting the lower limit for signal detection in electronic circuits. For this reason, to fully understand the complex scenario of the nonlinear phenomen…
Noise Enhanced Stability Phenomenon in Electron Spin Dynamics
2012
Possible utilization of the electron spin as an information carrier in electronic devices is an engaging challenge for future spin-based electronics. In these new devices, the information stored in a system of polarized electron spins, is transferred by applying an external electric field and finally detected. However, each initial non-equilibrium magnetization decays both in time and distance during the transport. Because of increasing miniaturization, to avoid too much intense electric fields, which could lead the system to exhibit a strongly nonlinear physical behavior, applied voltages are very low. Low voltages are subjected to the background noise; hence, it is mandatory to understand…
New insights into electron spin dynamics in the presence of correlated noise
2011
The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which keeps into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examinating the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, f…
Supercurrent-induced charge-spin conversion in spin-split superconductors
2018
We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin-splitting field in the presence of coflowing supercurrent. In such a system, the nonequilibrium state is characterized by charge, spin, energy, and spin-energy modes. Here we show that in the presence of both spin splitting and supercurrent, all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, which in the presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it can be detected by studyin…
Phonon-induced spin relaxation of conduction electrons in silicon crystals
2014
Experimental works managing electrical injection of spin polarization in n-type and p-type silicon have been recently carried out up to room-temperature. In spite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on phonon-induced electron spin depolarization in silicon structures, in a wide range of values of lattice temperature, doping concentration and amplitude of external fields, is still at a developing stage. In order to investigate the spin transport of conduction electrons in lightly doped n-type Si crystals, a set of semiclassical multiparticle Monte Carlo simulations has been carried out. The mean spin …
Reorientations and translations in a fragile glass-former: magnetic resonance studies of meta-fluoroaniline
1999
Abstract The rotational dynamics in supercooled liquid and glassy meta-fluoroaniline was studied using proton and fluorine spin-lattice relaxation times. It is shown that while proton relaxation is dominated by homonuclear relaxation, for fluorine heteronuclear relaxation prevails. The results could be well described using a distribution of correlation times. The mean correlation times show pronounced deviations from the simple Arrhenius law. In addition translational self-diffusion coefficients were measured for T>200 K using a static magnetic field gradient technique.
Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating.
2016
The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence …