Search results for "STATISTICS & PROBABILITY"

showing 10 items of 436 documents

Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…

2014

In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…

FOS: Computer and information sciencesStatistics and ProbabilityPopulationRatio estimatorLinearizationRatio estimator01 natural sciencesSurvey sampling.Horvitz–Thompson estimatorMethodology (stat.ME)010104 statistics & probabilityH\'ajek estimator0502 economics and businessApplied mathematicsMissing valuesHorvitz-Thompson estimator0101 mathematicseducationStatistics - Methodology050205 econometrics MathematicsPointwiseeducation.field_of_study[STAT.ME] Statistics [stat]/Methodology [stat.ME]05 social sciencesNonparametric statisticsEstimator16. Peace & justiceMissing dataFunctional data[ STAT.ME ] Statistics [stat]/Methodology [stat.ME]Kernel (statistics)Statistics Probability and UncertaintyNonparametric estimation[STAT.ME]Statistics [stat]/Methodology [stat.ME]
researchProduct

Conditional Bias Robust Estimation of the Total of Curve Data by Sampling in a Finite Population: An Illustration on Electricity Load Curves

2020

Abstract For marketing or power grid management purposes, many studies based on the analysis of total electricity consumption curves of groups of customers are now carried out by electricity companies. Aggregated totals or mean load curves are estimated using individual curves measured at fine time grid and collected according to some sampling design. Due to the skewness of the distribution of electricity consumptions, these samples often contain outlying curves which may have an important impact on the usual estimation procedures. We introduce several robust estimators of the total consumption curve which are not sensitive to such outlying curves. These estimators are based on the conditio…

FOS: Computer and information sciencesStatistics and ProbabilityPopulationWaveletsStatistics - Applications01 natural sciencesSurvey samplingMethodology (stat.ME)010104 statistics & probabilityKokic and bell methodConditional bias0502 economics and businessStatisticsApplications (stat.AP)Conditional bias0101 mathematics[MATH]Mathematics [math]educationStatistics - Methodology050205 econometrics MathematicsEstimationeducation.field_of_studyModified band depthbusiness.industryApplied Mathematics05 social sciencesSampling (statistics)Functional dataBootstrapElectricityStatistics Probability and Uncertaintybusinessasymptotic confidence bandsSocial Sciences (miscellaneous)Spherical principal component analysis
researchProduct

Asymptotic and bootstrap tests for subspace dimension

2022

Most linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices, see e.g. Ye and Weiss (2003), Tyler et al. (2009), Bura and Yang (2011), Liski et al. (2014) and Luo and Li (2016). The eigen-decomposition of one scatter matrix with respect to another is then often used to determine the dimension of the signal subspace and to separate signal and noise parts of the data. Three popular dimension reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues are used to test…

FOS: Computer and information sciencesStatistics and ProbabilityPrincipal component analysisMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMethodology (stat.ME)010104 statistics & probabilityDimension (vector space)Scatter matrixSliced inverse regression0502 economics and businessFOS: MathematicsSliced inverse regressionApplied mathematics0101 mathematicsEigenvalues and eigenvectorsStatistics - Methodology050205 econometrics MathematicsestimointiNumerical AnalysisOrder determinationDimensionality reduction05 social sciencesriippumattomien komponenttien analyysimonimuuttujamenetelmätPrincipal component analysisStatistics Probability and UncertaintySubspace topologySignal subspace
researchProduct

A multi-scale area-interaction model for spatio-temporal point patterns

2018

Models for fitting spatio-temporal point processes should incorporate spatio-temporal inhomogeneity and allow for different types of interaction between points (clustering or regularity). This paper proposes an extension of the spatial multi-scale area-interaction model to a spatio-temporal framework. This model allows for interaction between points at different spatio-temporal scales and the inclusion of covariates. We fit the proposed model to varicella cases registered during 2013 in Valencia, Spain. The fitted model indicates small scale clustering and regularity for higher spatio-temporal scales.

FOS: Computer and information sciencesStatistics and ProbabilityScale (ratio)Computer scienceManagement Monitoring Policy and LawMulti-scale area-interaction modelcomputer.software_genreVaricella01 natural sciencesPoint processMethodology (stat.ME)010104 statistics & probability0502 economics and businessStatisticsCovariate60D05 60G55 62M30Point (geometry)0101 mathematicsComputers in Earth SciencesCluster analysisStatistics - Methodology050205 econometrics 05 social sciencesInteraction modelExtension (predicate logic)Gibbs point processesComputingMethodologies_PATTERNRECOGNITIONSpatio-temporal point processesData miningcomputer
researchProduct

An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian Regions

2020

Abstract The availability of intensive care beds during the COVID‐19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short‐term prediction of COVID‐19 intensive care unit (ICU) beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model, which pools information over different areas, and an area‐specific nonstationary integer autoregressive methodology. Optimal weights are estimated using a leave‐last‐out rationale. The approach has been set up and validated during t…

FOS: Computer and information sciencesStatistics and ProbabilityTime FactorsOccupancyCoronavirus disease 2019 (COVID-19)Computer science01 natural sciencesGeneralized linear mixed modelSARS‐CoV‐2law.inventionclustered data; COVID-19; generalized linear mixed model; integer autoregressive; integer autoregressive model; panel data; SARS-CoV-2; weighted ensembleMethodology (stat.ME)panel data010104 statistics & probability03 medical and health sciences0302 clinical medicinelawCOVID‐19Intensive careEconometricsHumansclustered data030212 general & internal medicine0101 mathematicsPandemicsStatistics - MethodologySARS-CoV-2Reproducibility of ResultsCOVID-19General Medicineweighted ensembleIntensive care unitResearch PapersTerm (time)integer autoregressiveIntensive Care UnitsAutoregressive modelItalyNonlinear Dynamicsgeneralized linear mixed modelinteger autoregressive modelclustered data; COVID-19; generalized linear mixed model; integer autoregressive; integer autoregressive model; panel data; SARS-CoV-2; weighted ensemble; COVID-19; Humans; Intensive Care Units; Italy; Nonlinear Dynamics; Pandemics; Reproducibility of Results; Time Factors; ForecastingStatistics Probability and UncertaintySettore SECS-S/01Settore SECS-S/01 - StatisticaPanel dataResearch PaperForecasting
researchProduct

KFAS : Exponential Family State Space Models in R

2017

State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes an R package KFAS for state space modelling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is provided. Finally, a comparison to alternative R packages suitable for non-Gaussian time series modelling is presented.

FOS: Computer and information sciencesStatistics and ProbabilityaikasarjatGaussianNegative binomial distributionforecastingPoisson distribution01 natural sciencesStatistics - ComputationMethodology (stat.ME)010104 statistics & probability03 medical and health sciencessymbols.namesake0302 clinical medicineExponential familyexponential familyGamma distributionStatistical inferenceState spaceApplied mathematicsSannolikhetsteori och statistik030212 general & internal medicine0101 mathematicsProbability Theory and Statisticslcsh:Statisticslcsh:HA1-4737Computation (stat.CO)Statistics - MethodologyMathematicsR; exponential family; state space models; time series; forecasting; dynamic linear modelsta112state space modelsSeries (mathematics)RStatistics; Computer softwaresymbolsStatistics Probability and Uncertaintytime seriesSoftwaredynamic linear models
researchProduct

Bayesian Analysis of Population Health Data

2021

The analysis of population-wide datasets can provide insight on the health status of large populations so that public health officials can make data-driven decisions. The analysis of such datasets often requires highly parameterized models with different types of fixed and random effects to account for risk factors, spatial and temporal variations, multilevel effects and other sources on uncertainty. To illustrate the potential of Bayesian hierarchical models, a dataset of about 500,000 inhabitants released by the Polish National Health Fund containing information about ischemic stroke incidence for a 2-year period is analyzed using different types of models. Spatial logistic regression and…

FOS: Computer and information sciencesmedicine.medical_specialtyComputer scienceGeneral MathematicsBayesian probabilitydisease mappingPopulation healthbayesian inference; disease mapping; integrated nested Laplace approximation; spatial models; survival modelsBayesian inferenceLogistic regressionStatistics - Applications01 natural sciences010104 statistics & probability03 medical and health sciences0302 clinical medicineStatisticsComputer Science (miscellaneous)medicineApplications (stat.AP)spatial models0101 mathematicsEngineering (miscellaneous)Socioeconomic statusbayesian inferencesurvival modelslcsh:MathematicsPublic healthintegrated nested Laplace approximationlcsh:QA1-939Random effects modelSpatial variability030217 neurology & neurosurgeryMathematics
researchProduct

General framework for testing Poisson-Voronoi assumption for real microstructures

2020

Modeling microstructures is an interesting problem not just in Materials Science but also in Mathematics and Statistics. The most basic model for steel microstructure is the Poisson-Voronoi diagram. It has mathematically attractive properties and it has been used in the approximation of single phase steel microstructures. The aim of this paper is to develop methods that can be used to test whether a real steel microstructure can be approximated by such a model. Therefore, a general framework for testing the Poisson-Voronoi assumption based on images of 2D sections of real metals is set out. Following two different approaches, according to the use or not of periodic boundary conditions, thre…

FOS: Computer and information sciencesreal microstructuresPoisson-Voronoi diagrams0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchPoisson distribution01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)Set (abstract data type)010104 statistics & probabilitysymbols.namesakehypothesis testingPeriodic boundary conditionsApplied mathematicsApplications (stat.AP)0101 mathematicsStatistics - MethodologyStatistical hypothesis testing021103 operations researchCumulative distribution functionDiagramscalingGeneral Business Management and Accounting62P30 62-00 62-01 62G10persistence landscapeModeling and SimulationsymbolsTopological data analysiscumulative distribution functionVoronoi diagramApplied Stochastic Models in Business and Industry
researchProduct

Robustness of the risk–return relationship in the U.S. stock market

2008

Abstract Using GARCH-in-Mean models, we study the robustness of the risk–return relationship in monthly U.S. stock market returns (1928:1–2004:12) with respect to the specification of the conditional mean equation. The issue is important because in this commonly used framework, unnecessarily including an intercept is known to distort conclusions. The existence of the relationship is relatively robust, but its strength depends on the prior belief concerning the intercept. The latter applies in particular to the first half of the sample, where also the coefficient of the relative risk aversion is smaller and the equity premium greater than in the latter half.

Financial economicsEquity premium puzzle05 social sciencesBayesian probabilitySample (statistics)Conditional expectation01 natural sciences010104 statistics & probability0502 economics and businessEconometricsEconomicsStock market0101 mathematicsRobustness (economics)Finance050205 econometrics Risk returnFinance Research Letters
researchProduct

Cartels Uncovered

2018

How many cartels are there? The answer is important in assessing the efficiency of competition policy. We present a Hidden Markov Model that answers the question, taking into account that often we do not know whether a cartel exists in an industry or not. Our model identifies key policy parameters from data generated under different competition policy regimes and may be used with time-series or panel data. We take the model to data from a period of legal cartels - Finnish manufacturing industries 1951 - 1990. Our estimates suggest that by the end of the period, almost all industries were cartelized.

Finnish-Soviet tradekilpailupolitiikkajel:L4001 natural sciencesjel:L41jel:L0jel:L60competition lawjel:L00010104 statistics & probabilitykartellit0502 economics and business050207 economics0101 mathematicsta511lainsäädäntöidänkauppa05 social scienceskorporativismiantitrust policykilpailuoikeuslaitAntitrust; cartel; competition; detection; Hidden Markov models; illegal; legal; leniency; policy; registry.jel:L4antitrust; cartel; competition; detection; Hidden Markov models; illegal; legal; leniency; policy; registrykilpailuGeneral Economics Econometrics and Financecartelscorporatism
researchProduct