6533b872fe1ef96bd12d3165

RESEARCH PRODUCT

Bayesian Analysis of Population Health Data

Carmen ArmeroDorota MłynarczykVirgilio Gómez-rubioPedro Puig

subject

FOS: Computer and information sciencesmedicine.medical_specialtyComputer scienceGeneral MathematicsBayesian probabilitydisease mappingPopulation healthbayesian inference; disease mapping; integrated nested Laplace approximation; spatial models; survival modelsBayesian inferenceLogistic regressionStatistics - Applications01 natural sciences010104 statistics & probability03 medical and health sciences0302 clinical medicineStatisticsComputer Science (miscellaneous)medicineApplications (stat.AP)spatial models0101 mathematicsEngineering (miscellaneous)Socioeconomic statusbayesian inferencesurvival modelslcsh:MathematicsPublic healthintegrated nested Laplace approximationlcsh:QA1-939Random effects modelSpatial variability030217 neurology & neurosurgery

description

The analysis of population-wide datasets can provide insight on the health status of large populations so that public health officials can make data-driven decisions. The analysis of such datasets often requires highly parameterized models with different types of fixed and random effects to account for risk factors, spatial and temporal variations, multilevel effects and other sources on uncertainty. To illustrate the potential of Bayesian hierarchical models, a dataset of about 500,000 inhabitants released by the Polish National Health Fund containing information about ischemic stroke incidence for a 2-year period is analyzed using different types of models. Spatial logistic regression and survival models are considered for analyzing the individual probabilities of stroke and the times to the occurrence of an ischemic stroke event. Demographic and socioeconomic variables as well as drug prescription information are available at an individual level. Spatial variation is considered by means of region-level random effects.

https://doi.org/10.3390/math9050577