A Bayesian Multilevel Random-Effects Model for Estimating Noise in Image Sensors
Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parame…
Epidemiological Information Systems
Bayesian survival analysis with BUGS
Survival analysis is one of the most important fields of statistics in medicine and biological sciences. In addition, the computational advances in the last decades have favored the use of Bayesian methods in this context, providing a flexible and powerful alternative to the traditional frequentist approach. The objective of this article is to summarize some of the most popular Bayesian survival models, such as accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data. Moreover, an implementation of each presented model is provided using a BUGS syntax that can be run with JAGS from the R programmin…
Spatial analysis of the relationship between mortality from cardiovascular and cerebrovascular disease and drinking water hardness
Journal Article; Research Support, Non-U.S. Gov't; Reproduced with permission from Environmental Health Perspectives. Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strateg…
Statistical Methods for the Geographical Analysis of Rare Diseases
In this chapter we provide a summary of different methods for the detection of disease clusters. First of all, we give a summary of methods for computing estimates of the relative risk. These estimates provide smoothed values of the relative risks that can account for its spatial variation. Some methods for assessing spatial autocorrelation and general clustering are also discussed to test for significant spatial variation of the risk. In order to find the actual location of the clusters, scan methods are introduced. The spatial scan statistic is discussed as well as its extension by means of Generalised Linear Models that allows for the inclusion of covariates and cluster effects. In this …
Statistical relationship between hardness of drinking water and cerebrovascular mortality in Valencia: a comparison of spatiotemporal models
The statistical detection of environmental risk factors in public health studies is usually difficult due to the weakness of their effects and their confounding with other covariates. Small area geographical data bring the opportunity of observing health response in a wide variety of exposure values. Temporal sequences of these geographical datasets are crucial to gaining statistical power in detecting factors. The spatiotemporal models required to perform the statistical analysis have to allow for spatial and temporal correlations, which are more easily modelled via hierarchical structures of hidden random factors. These models have produced important research activity during the last deca…
Bayesian hierarchical nonlinear modelling of intra-abdominal volume during pneumoperitoneum for laparoscopic surgery
Laparoscopy is an operation carried out in the abdomen or pelvis through small incisions with external visual control by a camera. This technique needs the abdomen to be insufflated with carbon dioxide to obtain a working space for surgical instruments' manipulation. Identifying the critical point at which insufflation should be limited is crucial to maximizing surgical working space and minimizing injurious effects. Bayesian nonlinear growth mixed-effects models are applied to data coming from a repeated measures design. This study allows to assess the relationship between the insufflation pressure and the intra--abdominal volume.
Bayesian Analysis of Population Health Data
The analysis of population-wide datasets can provide insight on the health status of large populations so that public health officials can make data-driven decisions. The analysis of such datasets often requires highly parameterized models with different types of fixed and random effects to account for risk factors, spatial and temporal variations, multilevel effects and other sources on uncertainty. To illustrate the potential of Bayesian hierarchical models, a dataset of about 500,000 inhabitants released by the Polish National Health Fund containing information about ischemic stroke incidence for a 2-year period is analyzed using different types of models. Spatial logistic regression and…