Search results for "STELLAR EVOLUTION"

showing 10 items of 38 documents

General relativistic simulations of pasive-magneto-rotational core collapse with microphysics

2007

This paper presents results from axisymmetric simulations of magneto-rotational stellar core collapse to neutron stars in general relativity using the passive field approximation for the magnetic field. These simulations are performed using a new general relativistic numerical code specifically designed to study this astrophysical scenario. The code is based on the conformally-flat approximation of Einstein's field equations and conservative formulations of the magneto-hydrodynamics equations. The code has been recently upgraded to incorporate a tabulated, microphysical equation of state and an approximate deleptonization scheme. This allows us to perform the most realistic simulations of m…

Magnetohydrodynamics (MHD)General relativityRotational symmetryFOS: Physical sciencesGravitation ; Hydrodynamics ; Magnetohydrodynamics (MHD) ; Numerical ; Stars ; Supernovae ; RelativityAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)UNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsInstabilityGeneral Relativity and Quantum CosmologyRelativityStellar evolutionPhysicsNumericalMicrophysicsAstrophysics (astro-ph)Astronomy and AstrophysicsStars:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Magnetic fieldComputational physicsNeutron starSupernovaeSpace and Planetary ScienceHydrodynamicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]DynamoGravitation
researchProduct

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

2018

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

Nuclear and High Energy PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectgr-qcDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsStellar evolutionmedia_commonParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsStar formationGravitational wavehep-exGeneral Relativity and CosmologyFifth forcehep-phCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyNeutron starBeyond Standard Modelastro-ph.COlcsh:QC770-798Particle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

2018

This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…

Nuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nucleosynthesis0103 physical sciencesBinary starddc:530Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentStellar evolutionNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsAstronomyUniverseNeutron starSupernovaAstrophysics - Solar and Stellar Astrophysicsr-processJournal of Physics G: Nuclear and Particle Physics
researchProduct

Radio detection of the young binary HD 160934

2013

Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 an…

Orbital elementsPhysicsEuropean VLBI NetworkAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceVery-long-baseline interferometryOrbital motionBinary starAstrophysics::Solar and Stellar AstrophysicsStellar evolutionAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)AB Doradus moving group
researchProduct

Radio Emission from Binary Stars in the AB Doradus Moving Group

2015

AbstractPrecise determination of dynamical masses of pre-main-sequence stars is essential for calibrating stellar evolution models, that are widely used to derive theoretical masses of young low-mass objects. We have determined the individual masses of the pair AB Dor Ba/Bb using Australian Long Baseline Array observations and archive infrared data, as part of a larger program directed to monitor binary systems in the AB Doradus moving group. We have detected, for the first time, compact radio emission from both stars. This has allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28±0.05 M⊙ and 0.25±0…

Orbital elementsPhysicsStarsSpace and Planetary ScienceInfraredBinary starBinary numberAstronomyAstronomy and AstrophysicsAstrophysicsStellar evolutionAB Doradus moving groupProceedings of the International Astronomical Union
researchProduct

A comprehensive analysis of the cool RCB star DY Persei

2007

Context. Theoretically, the number of cool Galactic R Coronae Borealis stars (RCBs) should be greater than the warm RCBs, however to date, only a few candidates have been detected. Aims. Observations of the extremely cool RCB candidate, DY Per, and the anonymous nearby star (the “Taipei star”) are presented to specify its fundamental parameters and evolutionary status. Methods. CCD BVRI photometry and low-resolution spectroscopy at deep light decline was carried out in 2004. A high-resolution spectrum was gathered near the maximum light in 2002, and a qualitative analysis was made relative to the typical carbon stars of various types. Results. Near the light maximums, the nearby anonymous s…

Photometry (optics)PhysicsStarsSpace and Planetary ScienceAbsorption bandMetallicityAstronomyAstronomy and AstrophysicsAstrophysicsSpectroscopyStellar evolutionColor indexCarbon starAstronomy & Astrophysics
researchProduct

Measurement of the 2+→0+ ground-state transition in the β decay of F20

2019

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

Physics010308 nuclear & particles physicsBranching fractionDegenerate energy levelsDetectorchemistry.chemical_element01 natural sciences7. Clean energychemistry0103 physical sciencesHigh Energy Physics::ExperimentAtomic physics010306 general physicsGround stateCarbonStellar evolutionBeam (structure)FOIL methodPhysical Review C
researchProduct

CIT 6: The Early Phase of PPN?

2001

Photometric and spectroscopic studies for one of the early phase candidate for proto-planetary nebulae, the dust enshrouded extreme carbon star CIT 6, are presented.

PhysicsAstrophysics::Solar and Stellar AstrophysicsAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysicsEarly phaseStellar evolutionAstrophysics::Galaxy AstrophysicsCarbon starProtoplanetary nebula
researchProduct

The evolution of the rest-frame J- and H-band luminosity function of galaxies to z=3.5

2011

We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availability of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the four redshift bins 1.5<z<2.0, 2.0<z<2.5, 2.5<z<3.0 and 3.0<z<3.5. Combining our results with those already available at lower redshifts, we find that (1) the faint end slope is consistent with being const…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)FluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsH bandJ bandRedshiftGalaxyLuminositySpace and Planetary ScienceStellar evolutionAstrophysics - Cosmology and Nongalactic AstrophysicsLuminosity function (astronomy)
researchProduct

Evidence of a substellar companion to AB Dor C

2019

Studies of fundamental parameters of very low-mass objects are indispensable to provide tests of stellar evolution models that are used to derive theoretical masses of brown dwarfs and planets. However, only objects with dynamically determined masses and precise photometry can effectively evaluate the predictions of stellar models. AB Dor C (0.090 solar masses) has become a prime benchmark for calibration of theoretical evolutionary models of low-mass young stars. One of the ambiguities remaining in AB Dor C is the possible binary nature of this star. We observed AB Dor C with the VLTI/AMBER instrument in low-resolution mode at the J, H and K bands. The interferometric observables at the K-…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)Solar mass010504 meteorology & atmospheric sciencesBrown dwarfFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesExoplanetPhotometry (astronomy)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePlanet0103 physical sciencesBinary star010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesAstrophysics - Earth and Planetary Astrophysics
researchProduct