Search results for "STRENGTH"

showing 10 items of 2415 documents

Casting technology for ODS steels – dispersion of nanoparticles in liquid metals

2017

Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals…

010302 applied physicsNanocompositeMaterials scienceMetallurgychemistry.chemical_elementNanoparticleField strength02 engineering and technologySuperconducting magnet021001 nanoscience & nanotechnology01 natural scienceschemistryCasting (metalworking)Cavitation0103 physical sciences0210 nano-technologyTinDispersion (chemistry)IOP Conference Series: Materials Science and Engineering
researchProduct

Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

2018

This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceFabricationelectrical conductivityBlanketCondensed Matter Physics01 natural sciencesTemperature measurement010305 fluids & plasmasCorrosionchemistry.chemical_compoundThermal conductivitydual-coolant lead-lithium (DCLL) blanketFlexural strengthchemistryCorrosion by PbLi0103 physical sciencesThermalSilicon carbide:NATURAL SCIENCES:Physics [Research Subject Categories]flow channel insert (FCI)thermal conductivityComposite materialporous SiCIEEE Transactions on Plasma Science
researchProduct

Numerical values of MnZn ferrite nonlinear susceptibilities in a lossless approximation

2017

On the basis of expressions for nonlinear magnetic susceptibilities of soft ferrites obtained earlier the analysis of phase shifts between components of flux density on different frequencies and the magnetic field strength is carried out. Only the largest nonlinear susceptibilities those of third and fifth order are considered. It is shown that in the frequency range where losses are small and can be neglected the susceptibility of third order is negative but that of fifth order is positive. These statements allow explaining the shape of output voltage of toroidal transformer with soft ferrite core induced by strong harmonic field strength in the input. Numerical values of nonlinear suscept…

010302 applied physicsPhysicsCondensed matter physics020206 networking & telecommunicationsField strength02 engineering and technology01 natural sciencesFerrite corelaw.inventionMagnetic fieldNonlinear systemThird orderlawHarmonics0103 physical sciences0202 electrical engineering electronic engineering information engineeringFerrite (magnet)Transformer2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)
researchProduct

Reversed polarized emission in highly strained a-plane GaN/AlN multiple quantum wells

2010

The polarization of the emission from a set of highly strained $a$-plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite $c$ axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the $c$ axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been p…

010302 applied physicsPhysicsElectron densityCondensed matter physicsLinear polarizationOscillator strengthQuantum point contact: Physics [G04] [Physical chemical mathematical & earth Sciences]Infinitesimal strain theory02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Science: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Quantum dotQuantum mechanics0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Degree of polarization0210 nano-technologyQuantum wellComputingMilieux_MISCELLANEOUS
researchProduct

Spontaneous order in ensembles of rotating magnetic droplets

2019

Ensembles of elongated magnetic droplets in a rotating field are studied experimentally. In a given range of field strength and frequency the droplets form rotating structures with a triangular order - rotating crystals. A model is developed to describe ensembles of several droplets, taking into account the hydrodynamic interactions between the rotating droplets in the presence of a solid wall below the rotating ensemble. A good agreement with the experimentally observed periodic dynamics for an ensemble of four droplets is obtained. During the rotation, the tips of the elongated magnetic droplets approach close to one another. An expression is derived that gives the magnetic interaction be…

010302 applied physicsRange (particle radiation)Materials scienceField (physics)Dynamics (mechanics)Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesField strengthPhysics - Fluid Dynamics02 engineering and technologyCondensed Matter - Soft Condensed MatterSolid wall021001 nanoscience & nanotechnologyCondensed Matter PhysicsRotation01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsPhysics::Fluid DynamicsColloid0103 physical sciencesPhysics::Atomic and Molecular ClustersSoft Condensed Matter (cond-mat.soft)Self-assembly0210 nano-technology
researchProduct

Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

2016

Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling…

010302 applied physicseducation.field_of_studyMaterials scienceAcoustics and UltrasonicsDielectric strengthCondensed matter physicsAnnealing (metallurgy)Population02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesShape parameterSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials0103 physical sciences0210 nano-technologyeducationLow voltageQuantum tunnellingWeibull distributionVoltageJournal of Physics D: Applied Physics
researchProduct

On the Rationalization of Formation of Solvates: Experimental and Computational Study of Solid Forms of Several Nitrobenzoic Acid Derivatives

2020

Analysis of crystal structures, molecular properties, interaction strength in solution and computationally generated non-solvated form solid form landscapes of five chloronitrobenzoic acid isomers ...

010405 organic chemistryRationalization (psychology)Interaction strengthGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryComputational chemistryNitrobenzoic acidGeneral Materials ScienceCrystal Growth & Design
researchProduct

Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

2017

S. Jafarzadeh et. al.

010504 meteorology & atmospheric sciencesExtrapolationFOS: Physical scienceschromosphere [Sun]Field strengthAstrophysicsDense forest01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatorySun: chromosphereAstronomy and AstrophysicsMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide

2015

We investigate numerically the failure, collapse and flow of a two-dimensional brittle granular column over a horizontal surface. In our discrete element simulations, we consider a vertical monolayer of spherical particles that are initially held together by tensile bonds, which can be irreversibly broken during the collapse. This leads to dynamic fragmentation within the material during the flow. Compared to what happens in the case of a non-cohesive granular column, the deposit is much rougher, and the internal stratigraphic structure of the column is not preserved during the collapse. As has been observed in natural rockslides, we find that the deposit consists of large blocks laying on …

010504 meteorology & atmospheric sciencesGeometryLandslideRockslide01 natural sciences010305 fluids & plasmasEarth surfaceGeophysicsBrittlenessFragmentation (mass spectrometry)0103 physical sciencesMonolayerUltimate tensile strengthGeotechnical engineeringGeology0105 earth and related environmental sciencesEarth-Surface ProcessesJournal of Geophysical Research: Earth Surface
researchProduct

Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating

2015

cited By 23; The underlying physics of intermediate-depth earthquakes have been an enigmatic topic; several studies support either thermal runaway or dehydration reactions as viable mechanisms for their generation. Here we present fully coupled thermomechanical models that investigate the impact of grain size evolution and energy feedbacks on shear zone and pseudotachylite formation. Our results indicate that grain size reduction weakens the rock prior to thermal runaway and significantly decreases the critical stress needed for thermal runaway, making it more likely to result in intermediate-depth earthquakes at shallower depths. Furthermore, grain size is reduced in and around the shear z…

010504 meteorology & atmospheric sciencesThermal runawaySubduction[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]Geology[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]Geodynamics010502 geochemistry & geophysics01 natural sciencesGrain sizeMatrix (geology)13. Climate actionShear zonePetrologyGeologyStrengthening mechanisms of materialsSeismology0105 earth and related environmental sciencesMylonite
researchProduct