Search results for "STRENGTH"
showing 10 items of 2415 documents
Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke
2019
In order to contribute to the decarbonization of the economy, efficient alternatives to coal and coke should be found not only in the power sector but also in the industrial sectors (like steel, silicon and manganese production) in which coal and coke are used as a reductant and for steel production also as a fuel. To this aim many research works have been focused on the development of a coke substitute based on woody biomass and known as “biocarbon”. There are still barriers to overcome, among them: the biocarbon low density, poor mechanical strength and high reactivity. In this paper a new biocarbon production methodology is proposed, based on: pyrolysis at 600 °C, densification (using py…
Surrogate models for the compressive strength mapping of cement mortar materials
2021
Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method available in the literature, which can reliably predict their strength based on the mix components. This limitation is attributed to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques for predicting the compressive strength of mortars is investigated. Specifically, Levenberg–Marquardt, biogeography-based optimization, and invasive weed optimization algorithms are used for this purpose (based on experimental data available in the literature). The c…
Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments
2017
A three-degree-of-freedom mathematical vibration model of a high-speed punching press was developed in order to explore the vibration modes of the punching press. A multidomain model of the punching press was established to predict the kinematic state during different conditions, as well as the effects of load fluctuation on the motor speed. Experimental measurements of the acceleration of the punching press were carried out. The results comparison reveals that the multidomain model is consistent with the vibration model and the experimental measurements. Modal analysis and structure modification of the punching press were conducted. The foundation at the base of the punching press was impr…
Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite
2018
Abstract Surface metal matrix composites were synthesized via friction stir processing (FSP) on the surface of aluminium alloy 7075 (AA 7075) sheets by incorporating B4C particles (B4CP). The influence of tool rotational speeds, powder particle sizes, and change in tool travel direction between FSP passes on particle distribution and resulting properties were studied in detail. Change in tool travel direction, decreased tool rotation speed and fine B4C particles enhanced B4CP distribution and wear properties thereof. Wear resistance of composites were doubled on account of the B4CP distribution and resultant several strengthening mechanisms.
Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…
2019
A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…
Residual stress measurement in innovative friction stir welding processes
2017
In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …
Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys
2016
Friction Stir Extrusion is an innovative direct-recycling technology for metal machining chips. During the process a specifically designed rotating tool is plunged into a cylindrical matrix containing the scraps to be recycled. The stirring action of the tool prompts solid bonding related phenomena allowing the back extrusion of a full dense rod. This process results to be particularly relevant because allows the reuse of the scrap without any previous treatment. Experiments have been carried out in order to investigate the influence of the process parameters on the extrudes quality and a numerical model has been developed in order to simulate the evolution of the material flow.
AZ31 magnesium alloy recycling through friction stir extrusion process
2015
Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…
Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation
2016
Dissimilar lap joints were produced by friction stir welding (FSW) out of Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by analyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that …
Direct laser welding of pure titanium to austenitic stainless steel
2018
Abstract Direct butt joining of pure titanium to 316L stainless steel with continuous Yb:YAG laser was performed with variation of the beam offset from joint line. Mechanical properties of samples were evaluated by tensile tests and three-point flexural tests. The fractured surfaces and cross sections of welds were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Tensile properties of welds were strongly determined by the beam offset from joint line and are well described by Weibull statistics. Ultimate tensile strength of 174 ± 69 MPa and ultimate flexural strength of 297 ± 48 MPa were obtained. Brittle fracture took place in…