Search results for "SURFACE MODIFICATION"
showing 10 items of 417 documents
Functionalization of a polyaspartamide with glycidyl methacrylate: A useful method to prepare hydrogels through gamma irradiation
1999
α-β-Poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) was derivatized with glycidyl methacrylate (GMA). Aqueous solutions of the obtained copolymer PHEA-GMA (PHG) were irradiated by gamma rays with a dose rate of 0.5 KGy/h and at zero °C in the presence or in the absence of N,N'-methylenebisacrylamide (BIS). New hydrogel systems were obtained and characterized by FT-IR analyses and swelling measurements in aqueous medium at different pH values.
New biodegradable hydrogels based on a photo-cross-linkable polyaspartamide and poly(ethylene glycol) derivatives. Release studies of an anticancer d…
2001
The functionalization of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) with glycidyl methacrylate (GMA) gives rise to a water-soluble photosensitive copolymer PHEA-GMA (PHG). Aqueous solutions of PHG alone or in combination with various concentrations of poly(ethylene glycol) dimethacrylate or poly(ethylene glycol) diacrylate (PEGDA) have been exposed to a source of UV rays at 313 nm in order to obtain polymeric networks. All samples have been prepared both as water-swellable microparticles and as gel systems. Microparticles have been characterised by Fourier transform IR spectrophotometry, dimensional analysis and swelling measurements in aqueous media mimicking biological fluids. In vi…
Supramolecular functionalization and concomitant enhancement in properties of Au25 clusters
2014
We present a versatile approach for tuning the surface functionality of an atomically precise 25 atom gold cluster using specific host-guest interactions between ?-cyclodextrin (CD) and the ligand anchored on the cluster. The supramolecular interaction between the Au25 cluster protected by 4-(t-butyl)benzyl mercaptan, labeled Au25SBB18, and CD yielding Au25SBB18�?�CDn (n = 1, 2, 3, and 4) has been probed experimentally using various spectroscopic techniques and was further analyzed by density functional theory calculations and molecular modeling. The viability of our method in modifying the properties of differently functionalized Au25 clusters is demonstrated. Besides modifying their optoe…
Exploiting multivalent nanoparticles for the supramolecular functionalization of graphene with a nonplanar recognition motif.
2013
The supramolecular modification of planar graphene with the geometri- cally mismatched, curved 9,10-di(1,3-dithiole-2-ylidene)-9,10-dihydroanthracene (exTTF) molecule is demonstrated. The exTTF-graphene interaction is governed by p-p and CH-p interactions, with a negligible contribution from charge transfer. We amplified these weak forces through multivalent gold nanoparticles. Our re- sults show that planarity is not a prerequisite for recognition motifs for graphene.
Metal- and Reagent-Free Dehydrogenative Formal Benzyl-Aryl Cross-Coupling by Anodic Activation in 1,1,1,3,3,3-Hexafluoropropan-2-ol
2018
A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent- and metal-free dehydrogenative formal benzyl-aryl cross-coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformati…
Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide
2014
The environmentally friendly synthesis of nanomaterials using green chemistry has attracted tremendous attention in recent years due to its easy handling, low cost, and biocompatibility. Here we demonstrate a facile and efficient route for the synthesis of highly reduced graphene oxide (PE-HRG) by the green reduction of graphene oxide (GRO) using the Pulicaria glutinosa plant extract (PE). The phytomolecules present in the P. glutinosa extract are not only responsible for the reduction of GRO, but also for the functionalization of the surface of the PE-HRG nanosheets and stabilize them in various solvents, thereby limiting the use of any other external and harmful chemical reductants and su…
Synthesis of Highly Functionalized Fluorinated Cispentacin Derivatives
2012
Fluorinated highly functionalized cispentacin derivatives were synthetised starting from an unsaturated bicyclic b-lactam through C¼C bond functionalization via the dipolar cycloaddition of a nitrile oxide, isoxazoline opening, and fluorination by OH/F exchange.
Polymethacrylate monoliths with immobilized poly-3-mercaptopropyl methylsiloxane film for high-coverage surface functionalization by thiol-ene click …
2014
In this work, new polythiol-functionalized macroporous monolithic polymethacrylate-polysiloxane composite materials are presented which can be useful substrates for highly efficient immobilization of (chiral) catalysts, chromatographic ligands, and other functional moieties by thiol-ene click reaction. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) (poly(GMA-co-EDMA)) monoliths were coated with a poly-3-mercaptopropyl methylsiloxane (PMPMS) film and subsequently the polymer was covalently immobilized by formation of crosslinks via nucleophilic substitution reaction with pendent 2,3-epoxypropyl groups on the monolith surface. This monolith, though, showed similar levels of surface co…
Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters
2017
Recently, electro-Fenton (EF) process has been shown as a promising, facile, effective, low cost and environmentally-friendly alternative for synthesizing polymer nanogels suitable as biocompatible nanocarriers for emerging biomedical applications. Here, the electrochemically-assisted modification of poly(vinylpyrrolidone) (PVP) by EF process was studied to assess the role of key operation parameters for a precise modulation of polymer crosslinking and its functionalization with [sbnd]COOH and succinimide groups. The dimensions of the nanogels, in terms of hydrodynamic radius (Rh) and weight-average molecular weight (Mw), can be tuned up by controlling the electrolysis time, current density…
Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols
2017
Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are highly required, and different chemical approaches have been described in the past decades. However, their reactivity is often poor, requiring long reaction times (2-18 h) or the use of UV light (10-30 min). Here, we report a simple and rapid surface functionalization for H-terminated Si(111) surfaces using alkyl silanols. This catalyst-free surface reaction is fast (15 min at room temperature) and…