Search results for "SWCNT"

showing 9 items of 9 documents

3He NMR: from free gas to its encapsulation in fullerene

2013

The 3He nuclear magnetic shieldings were calculated for single helium atom, its dimer, simple models of fullerene cages (He@Cn), and single wall carbon nanotubes. The performances of several levels of theory (HF, MP2, DFT-VSXC, CCSD, CCSD(T), and CCSDT) were tested. Two sets of polarization-consistent basis sets were used (pcS-n and aug-pcS-n), and an estimate of 3He nuclear magnetic shieldings in the complete basis set limit using a two-parameter fit was established. Theoretical 3He results reproduced accurately previously reported theoretical values for helium gas, dimer, and helium probe inside several fullerene cages. Excellent agreement with experimental values was achieved. 3He nuclea…

molecular modelingab initioSWCNTfullerene3 He NMRGIAOMagnetic Resonance in Chemistry
researchProduct

DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs)

2011

Linearly conjugated benzene rings (acenes), belt‐shape molecules (cyclic acenes) and model single wall carbon nanotubes (SWCNTs) were fully optimized at the unrestricted level of density functional theory (UB3LYP/6‐31G*). The models of SWCNTs were selected to get some insight into the potential changes of NMR chemical shift upon systematic increase of the molecular size. The theoretical NMR chemical shifts were calculated at the B3LYP/pcS‐2 level of theory using benzene as reference. In addition, the change of radial breathing mode (RBM), empirically correlated with SWCNT diameter, was directly related with the radius of cyclic acenes. Both geometrical and NMR parameters were extrapolated t…

acenesbelt moleculesmodel (40) zigzag SWCNTnuclear isotropic shieldingDFTMagnetic Resonance in Chemistry
researchProduct

Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes

2016

Abstract In this work, we demonstrate flexible solution processed light emitting electrochemical cells (LECs) which use single-walled carbon nanotubes (SWCNTs) films as the substrate. The SWCNTs were synthesized by an integrated aerosol method and dry-transferred on the plastic substrates at room temperature. The addition of a screen printed poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) film onto the nanostructured electrode further homogenizes the surface and enlarges the work function, enhancing the hole injection into the active layer. By using an efficient phosphorescent ionic transition metal complex (iTMC) as the active material, efficacies up to 9…

Materials scienceLight-emitting electrochemical cellsFlexible devices02 engineering and technologySubstrate (electronics)Carbon nanotubeElectroluminescence010402 general chemistry01 natural sciencesElectrochemical celllaw.inventionBiomaterialsPEDOT:PSSlawSWCNTsMaterials ChemistryOLEDWork functionElectrical and Electronic Engineeringta114business.industryOLEDsGeneral ChemistryTransition metal complex021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectroluminescenceElectrodeOptoelectronics0210 nano-technologybusinessORGANIC ELECTRONICS
researchProduct

DFT study of zigzag (n, 0) single-walled carbon nanotubes: 13C NMR chemical shifts

2016

Abstract 13 C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4–0.8 nm and length up to 2.2 nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter w…

Models MolecularMaterials science02 engineering and technologyCarbon nanotube010402 general chemistryDFT01 natural sciencesMolecular physicslaw.inventionlawComputational chemistryMaterials ChemistryCarbon-13 Magnetic Resonance SpectroscopyPhysical and Theoretical ChemistrySpectroscopyBasis setNanotubes Carbontheoretical modelingChemical shiftCarbon-13Carbon-13 NMR021001 nanoscience & nanotechnologyzigzag SWCNTComputer Graphics and Computer-Aided DesignNMR0104 chemical sciencesReal sizeZigzagQuantum TheorycyclacenesDensity functional theory0210 nano-technologyJournal of Molecular Graphics and Modelling
researchProduct

DFT studies on armchair (5, 5) SWCNT functionalization. Modification of selected structural and spectroscopic parameters upon two-atom molecule attac…

2015

Abstract Density functional theory (DFT) studies on adsorption of several gaseous homo- and hetero-diatomic molecules (AB) including H2, O2, N2, NO and CO on external surface of H-capped pristine armchair (5, 5) single-walled carbon nanotube (SWCNT) were conducted. Structures of C70H10 and the corresponding C70H10–AB adducts were fully optimized at the B3LYP/6-311G* level of theory. Calculated HOMO/LUMO energy gaps (Eg), 13C NMR chemical shifts and IR/Raman parameters were analyzed and critically compared with available experimental data. Significant changes of carbon NMR atom chemical shifts (up to −100 ppm) and shielding anisotropies (up to −180 ppm) at sites of addition were observed. Fu…

Models MolecularNanotubeMaterials scienceMagnetic Resonance SpectroscopyIR/RamanMolecular ConformationElectrons02 engineering and technologyCarbon nanotube010402 general chemistrySpectrum Analysis Raman01 natural scienceslaw.inventionsymbols.namesakeComputational chemistrylawSpectroscopy Fourier Transform InfraredMaterials ChemistryMoleculeDFT and GIAO NMRHOMO/LUMO gapPhysical and Theoretical ChemistryHOMO/LUMOSpectroscopyNanotubes CarbonChemical shiftsingle-walled karbon nanotube (SWCNT)Carbon-13 NMR021001 nanoscience & nanotechnologyComputer Graphics and Computer-Aided Design0104 chemical sciencessymbolsPhysical chemistryQuantum TheoryThermodynamicsDensity functional theory0210 nano-technologyRaman spectroscopyabsorptionJournal of Molecular Graphics and Modelling
researchProduct

Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides

2015

Control over chemical functionalization is a crucial point in the field of nanotechnology. Herein, we present the covalent functionalization of several carbon nanoforms (single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanohorns) by means of diphenyl dichalcogenides. These ones show different reactivity to the nanomaterials and are able to modify their electronic properties depending on the electronegativity of the functionalizing heteroatom. Theoretical calculations were also performed to support the experimental results. All the modified structured nanocarbons were thoroughly characterized by TGA Raman, XPS, UV/Vis/nIR, IR and TEM te…

Chemical substanceMaterials scienceHeteroatomCarbon nanohornSelective chemistry of single-walled nanotubeschemistry.chemical_elementNanotechnologyCarbon nanotubeCarbon nanotubelaw.inventionNanomaterialschalcogenidesymbols.namesakeSWCNTlawGeneral Materials ScienceReactivity (chemistry)Raman spectroscopy XPS spectroscopyCarbon nanomaterials; chemical modificationSettore CHIM/06 - Chimica OrganicaCarbon nanomaterialchemistrysymbolsfunctionalizationCarbon nanomaterialsChemical functionalizationRaman spectroscopychemical modificationCarbon
researchProduct

DFT calculations of structures, 13C NMR chemical shifts, and Raman RBM mode of simple models of small‐diameter zigzag (4,0) carboxylated single‐walle…

2012

Linearly conjugated benzene rings (acenes), belt‐shaped molecules (cyclic acenes), and models of single‐walled carbon nanotubes (SWCNTs) with one carboxylic group at the open end were fully optimized at the B3LYP/6‐31G* level of theory. These models were selected to obtain some insight into the nuclear isotropic changes resulting from systematically increasing the basic building units of open‐tip‐monocarboxylated SWCNTs. In addition, the position of radial breathing mode (RBM), empirically correlated with the SWCNT diameter, was directly related with the radius of model cyclic acene rings. A regular convergence of selected structural, NMR, and Raman parameters with the molecular system size…

acenes0) SWCNT modelRaman RBM modezigzag (4COOH functionalizationDFTNMRMagnetic Resonance in Chemistry
researchProduct

DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes

2011

Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube ri…

Steric effectsNanotubeMaterials scienceBiomedicine generalCarboxylic AcidsSubstituentHealth InformaticsCarbon nanotubeDFTCatalysislaw.inventionEnd-substitutionInorganic Chemistrychemistry.chemical_compoundCarboxylation energylawOrganic chemistryComputer SimulationComputer Applications in ChemistryPhysical and Theoretical ChemistryAnthracenesLife Sciences generalOriginal PaperNanotubes CarbonOrganic ChemistryZigzag and armchair SWCNTBenzoic AcidPhenanthrenesComputer Science ApplicationsChemistryCrystallographyModels ChemicalComputational Theory and MathematicschemistryZigzagComputer Appl. in Life SciencesQuantum TheoryThermodynamicsMolecular MedicineSurface modificationCOOH functionalization
researchProduct

OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory

2011

The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 A for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21G level, and in some cases at the B3LYP/6-31G* level, and the energy associated with the attachment of the OH substituent was determined. The OH-group attachment energy was compared with the OH functionalization of phenanthrene and picene models and with previous results for zigzag (9.0) SWCNT systems. In comparison to zigzag SWCNTs, the armchair form is more (by about 5 to 10 kcal mol−1) reactive toward hydroxylation. Figure The structures of ide…

NanotubeMaterials scienceSubstituentchemistry.chemical_elementCarbon nanotubeHydroxylationSpectrum Analysis RamanDFTHydroxylation energyCatalysislaw.inventionInorganic Chemistrychemistry.chemical_compoundlawComputational chemistryPhysical and Theoretical ChemistryArmchair SWCNTOriginal PaperHydroxyl RadicalNanotubes CarbonOH functionalizationOrganic ChemistryCarbonComputer Science ApplicationsCrystallographyModels ChemicalComputational Theory and MathematicschemistryPiceneZigzagSurface modificationDensity functional theoryEnd substitutionCarbonJournal of Molecular Modeling
researchProduct