Search results for "SYRINGAE"

showing 10 items of 24 documents

The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation

2020

Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modific…

0106 biological sciences0301 basic medicinePseudomonas syringaeMiRNA bindingPlant ScienceBiology<i>pseudomonas syringae</i>01 natural sciencesTomato03 medical and health sciencesBotrytis cinerealcsh:BotanyTomàquetsTranscriptional regulationEpigeneticsGeneEcology Evolution Behavior and SystematicsBotrytis cinereamiRNAGeneticsEcologyHistone modificationsfungifood and beveragesFongs patògensbiology.organism_classificationChromatin immunoprecipitationlcsh:QK1-989030104 developmental biologyHistone<i>botrytis cinerea</i>biology.proteinRNAH3K4me3EpigeneticsChromatin immunoprecipitation010606 plant biology & botany
researchProduct

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct

Characteristic of Pseudomonas syringae pv. atrofaciens Isolated from Weeds of Wheat Field

2021

The aim of this study was the identification of the causative agent of the basal glume rot of wheat Pseudomonas syringae pv. atrofaciens from the affected weeds in wheat crops, and determination of its virulent properties. Isolation of P. syringae pv. atrofaciens from weeds of wheat crops was carried out by classical microbiological methods. To identify isolated bacteria, their morphological, cultural, biochemical, and serological properties as well as fatty acids and Random Amplification of Polymorphic DNA (RAPD)-PCR (Polymerase chain reaction) profiles with the OPA-13 primer were studied. Pathogenic properties were investigated by artificial inoculation of wheat plants and weed plants, fr…

0301 basic medicine030106 microbiologyVirulencelcsh:Technologyfatty acidslaw.inventionlcsh:Chemistry<i>Pseudomonas syringae</i> pv. <i>atrofaciens</i>03 medical and health scienceslawRAPDwheatBotanyPseudomonas syringaeweedsbasal glume rotGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Polymerase chain reactionFluid Flow and Transfer ProcessesPseudomonas syringae pv.atrofaciensbiologyInoculationlcsh:TProcess Chemistry and TechnologyGlumefungiGeneral Engineeringfood and beveragesphenotypic and genotypic propertiesbiology.organism_classificationlcsh:QC1-999Computer Science ApplicationsRAPD030104 developmental biologylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Weedlcsh:Engineering (General). Civil engineering (General)Bacterialcsh:PhysicsApplied Sciences
researchProduct

Over-expression of CsGSTU promotes tolerance to the herbicide alachlor and resistance to Pseudomonas syringae pv. tabaci in transgenic tobacco

2017

Glutathione transferases (GSTs) mainly catalyze the nucleophilic addition of glutathione to a large variety of hydrophobic molecules participating to the vacuole compartmentalization of many toxic compounds. In this work, the putative tolerance of transgenic tobacco plants over-expressing CsGSTU genes towards the chloroacetanilide herbicide alachlor was investigated. Our results show that the treatment with 0.0075 mg cm-3 of alachlor strongly affects the growth of both wild type and transformed tobacco seedlings with the sole exception of the transgenic lines overexpressing CsGSTU2 isoform that are barely influenced by herbicide treatment. In order to correlate the in planta studies with en…

0301 basic medicineTransgeneHost–pathogen interactionAlachlorWild typefood and beveragesPlant ScienceGlutathioneHorticultureBiotic stressBiology03 medical and health scienceschemistry.chemical_compound030104 developmental biologybiotic stress glutathione transferase host-pathogen interaction phytoremediationBiochemistrychemistryBotanyPseudomonas syringaePlant defense against herbivoryBiologia plantarum
researchProduct

Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae

2013

Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. ja…

CIENCIAS MÉDICAS Y DE LA SALUDSTRESSLotus japonicusLotusInmunologíaDefence mechanismslcsh:MedicinePseudomonas syringaePlant disease resistanceCiencias BiológicasSYRINGAE//purl.org/becyt/ford/1 [https]Gene Expression Regulation PlantTRANSCRIPTOMICBotanyPseudomonas syringaePlant defense against herbivoryArabidopsis thalianalcsh:Science//purl.org/becyt/ford/1.6 [https]Ciencias de las Plantas BotánicaDisease ResistanceOligonucleotide Array Sequence AnalysisPlant DiseasesEcotypeMultidisciplinarybiologyEcotypeLOTUSGene Expression Profilinglcsh:Rfungifood and beverages//purl.org/becyt/ford/3.1 [https]biology.organism_classificationBIOTICMedicina BásicaJAPONICUSLotuslcsh:Q//purl.org/becyt/ford/3 [https]PSEUDOMONASCIENCIAS NATURALES Y EXACTASResearch ArticlePLoS ONE
researchProduct

A new Phytophthora sp causing a basal canker on beech in Italy.

2003

In autumn 2001, bleeding cankers were observed on the basal portion of the trunk of a declining tree in a forest stand of European beech (Fagus sylvatica L.) in Latium (central Italy). A Phytophthora sp. was isolated consistently from infected trunk bark using whole apples as bait. Isolations were made from brown lesions that developed in the apple pulp around the inserted bark pieces. Pure cultures were obtained by using hyphal tip transfers. Colonies were stellate on V8 juice agar (V8A), uniform to slightly radiate on cornmeal agar, and cottony, without a distinct growth pattern on potato dextrose agar (PDA). On V8A, radial growth rates were 2.1, 4.8, and 4.5 mm/day at 10, 15, and 20°C, …

CankerbiologyfungiHyphal tipPlant Sciencebiology.organism_classificationmedicine.diseasePhytophthora pseudosyringaeFagus sylvaticaCollar rotBotanymedicinePotato dextrose agarPhytophthoraAgronomy and Crop ScienceBeech
researchProduct

ICTV Virus Taxonomy Profile: Cystoviridae

2017

The family Cystoviridae includes enveloped viruses with a tri-segmented dsRNA genome and a double-layered protein capsid. The innermost protein shell is a polymerase complex responsible for genome packaging, replication and transcription. Cystoviruses infect Gram-negative bacteria, primarily plant-pathogenic Pseudomonas syringae strains. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Cystoviridae, which is available at http://www.ictv.global/report/cystoviridae.

Cystoviridae0301 basic medicinebacteriophagesGenes Viralviruksetviruses030106 microbiologyGenome ViralVirus ReplicationGenomebakteriofagitICTVtaxonomy03 medical and health sciencesViral envelopeVirologyGram-Negative BacteriaPseudomonas syringaevirusesPseudomonas phage phi6PolymeraseVirus classificationbiologyta1183Bacteriophage phi 6VirologyICTV Virus Taxonomy Profiles3. Good health030104 developmental biologyCapsidViral replicationbiology.proteinPhageRNA ViralCapsid ProteinsJournal of General Virology
researchProduct

Absence of endo-1,4-β-glucanase KOR1 alters the Jasmonate-dependent defence response to Pseudomonas syringae in Arabidopsis

2014

During plant-pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant-pathogen interactions. Here we studied the response of the Arabidopsis thaliana T-DNA insertion mutant lacking EG Korrigan1 (KOR1) infected with Pseudomonas syringae. KOR1 is predicted to be an EG which is thought to participate in cellulose biosynthesis. We found that kor1-1 plants were more susceptible to P. syringae, and displayed severe dise…

DNA BacterialPhysiologyLipoxygenaseendo-glucanasesMutantArabidopsisPseudomonas syringaeCyclopentanesPlant ScienceMicrobiologychemistry.chemical_compoundCellulaseCell WallGene Expression Regulation PlantArabidopsisPseudomonas syringaeArabidopsis thalianaOxylipinsJasmonateplant responsePlant DiseasesbiologyArabidopsis ProteinsJasmonic acidfungiCalloseMembrane Proteinsfood and beveragesGlucanasebiology.organism_classificationchemistrycell wallSalicylic AcidAgronomy and Crop ScienceJournal of Plant Physiology
researchProduct

Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato a…

2014

Summary: Pseudomonas corrugataCFBP 5454 produces two kinds of cyclic lipopeptides (CLPs), cormycin A and corpeptins, both of which possess surfactant, antimicrobial and phytotoxic activities. In this study, we identified genes coding for a putative non-ribosomal peptide synthetase and an ABC-type transport system involved in corpeptin production. These genes belong to the same transcriptional unit, designated crpCDE. The genetic organization of this locus is highly similar to other PseudomonasCLP biosynthetic clusters. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis revealed that transporter and synthetase genomic knock-out mutants were u…

DNA BacteriallipodepsipeptidesABC transporters corpeptins Lux R transcriptional regulators non-ribosomal peptide synthetase Pseudomonas.chromobacterium-violaceumcloningPeptides CyclicLipopeptidesSolanum lycopersicumPseudomonasABC transporters Lux R transcriptional regulators non-ribosomal peptide synthetaseTobaccoPeptide SynthasesLux R transcriptional regulatorsnon-ribosomal peptide synthetasePhylogenyVLAGPlant DiseasesCell-Free SystemVirulenceputisolvin-iisyringae pv.-syringaeSettore AGR/12 - Patologia VegetaleOriginal Articlesgram-negative bacteriapeptideBiosynthetic PathwayssyringomycinRepressor ProteinssyringopeptinFood Quality and DesignABC transportersGenesGenes BacterialMultigene FamilyHost-Pathogen InteractionsMutationTrans-ActivatorsATP-Binding Cassette Transportersquorum-sensing system
researchProduct

Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa

2019

Abstract Background Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that thrives best in the distal elements of plumbing and waste-water systems. Although nosocomial outbreaks of PA have been associated with water sources, the role of the plumbing system of healthcare premises as a reservoir for this pathogen is still unclear. Materials and methods We collected water samples from 12 technical areas, distant from any medical activity, in a teaching hospital in France once a week for 11 weeks. We used a method that resuscitates persister cells because of the nutrient-poor conditions and the presence of inhibitors (e.g. chlorine and copper ions). Briefly, water was sampled i…

Environmental EngineeringMultidrug tolerance0208 environmental biotechnology02 engineering and technology010501 environmental sciencesmedicine.disease_cause01 natural sciencesMicrobiologyAgar platechemistry.chemical_compoundGenomic islandmedicinePseudomonas syringaeHumansWaste Management and DisposalPathogen0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringOne healthbiologyPersistersPseudomonas aeruginosaEcological Modelingbiology.organism_classificationPollutionPremises plumbingPseudomonas putidaHospitals020801 environmental engineering3. Good healthR2a agar[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryPseudomonas aeruginosaFranceSanitary EngineeringCopper
researchProduct