Search results for "Saccharomyces cerevisiae Proteins"

showing 10 items of 231 documents

A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae

2021

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate o…

0301 basic medicineMitochondrial DNASaccharomyces cerevisiae ProteinsQH301-705.5030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeMitochondrionyeastMitochondrial DynamicsCatalysisArticleInorganic ChemistryDesiccation tolerance03 medical and health sciencesmedicineDehydrationPhysical and Theoretical ChemistryBiology (General)DesiccationMolecular BiologyQD1-999SpectroscopyMicrobial ViabilitybiologyDehydrationChemistryOrganic ChemistryCell CycleWild typeGeneral Medicinedynamicsmedicine.diseasebiology.organism_classificationYeastComputer Science ApplicationsCell biologyMitochondriaChemistry030104 developmental biologymitochondrial fusionGenome MitochondrialInternational Journal of Molecular Sciences
researchProduct

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

2017

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

0301 basic medicinePhysiologyProtein Extractionlcsh:MedicineYeast and Fungal ModelsPolymerase Chain ReactionBiochemistryGreen fluorescent proteinEpitopesDatabase and Informatics MethodsGene Expression Regulation FungalImmune PhysiologyProtein purificationMacromolecular Structure AnalysisMedicine and Health SciencesProto-Oncogene Proteins c-myclcsh:ScienceStainingExtraction TechniquesImmune System ProteinsMultidisciplinarybiologyGene targetingProtein subcellular localization predictionMembrane StainingExperimental Organism SystemsGene TargetingArtifactsSequence AnalysisPlasmidsResearch ArticleProtein StructureSaccharomyces cerevisiae ProteinsBioinformaticsRecombinant Fusion ProteinsGenetic VectorsGreen Fluorescent ProteinsImmunologySaccharomyces cerevisiaeHemagglutinins ViralSaccharomyces cerevisiaeComputational biologyResearch and Analysis MethodsGreen Fluorescent ProteinGenomic InstabilityAntibodiesProtein–protein interactionProto-Oncogene Proteins c-mycSaccharomyces03 medical and health sciencesModel OrganismsAmino Acid Sequence AnalysisMolecular BiologyStaining and Labelinglcsh:ROrganismsFungiBiology and Life SciencesProteinsbiology.organism_classificationFusion proteinYeastLuminescent Proteins030104 developmental biologySpecimen Preparation and Treatmentlcsh:QProtein Structure NetworksPLOS ONE
researchProduct

Phosphorylation and proteasome recognition of the mRNA- binding protein Cth2 facilitates yeast adaptation to iron deficiency

2018

Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins.…

0301 basic medicineProteasome Endopeptidase ComplexSaccharomyces cerevisiae ProteinsIronPosttranslational regulationSaccharomyces cerevisiaeMrna bindingMicrobiology03 medical and health sciencesProtein stabilityTristetraprolinGene Expression Regulation FungalVirologyPolitical scienceProtein stabilitySerineRNA MessengerPhosphorylationIron deficiencyAdaptation PhysiologicalQR1-502Yeast030104 developmental biologyMutagenesisChristian ministryProtein Processing Post-TranslationalHumanities
researchProduct

Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.

2016

The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we …

0301 basic medicineRNA StabilitySaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityMutantSaccharomyces cerevisiaeBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistryMolecular Imprinting03 medical and health sciencesStructural BiologyTranscription (biology)Stress PhysiologicalGeneticsRNA MessengerImprinting (psychology)Molecular BiologyGeneGeneticsMessenger RNAbiologybiology.organism_classificationCell biology030104 developmental biologyMutationbiology.proteinRNA Polymerase IIBiochimica et biophysica acta
researchProduct

The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation

2017

Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion c…

0301 basic medicineRibosomal ProteinsSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticCèl·lulesÀcids nucleicsGene regulatory networkRibosome biogenesisSaccharomyces cerevisiaeBiologyRibosome assembly03 medical and health sciencesRegulació genèticaGeneticsGene Regulatory NetworksHistone ChaperonesRNA Processing Post-TranscriptionalGeneAdenosine TriphosphatasesFeedback PhysiologicalMessenger RNAOrganelle BiogenesisGene regulation Chromatin and EpigeneticsRNAChromatinCell biology030104 developmental biologyRNA RibosomalMutationATP-Binding Cassette TransportersOrganelle biogenesisTranscriptional Elongation FactorsSynthetic Lethal MutationsTranscriptomeRibosomes
researchProduct

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

2016

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 …

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription FactorsThe Biochemical journal
researchProduct

Regulation of yeast fatty acid desaturase in response to iron deficiency

2017

Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this re…

0301 basic medicineSaccharomyces cerevisiae ProteinsMga2Ole1Saccharomyces cerevisiaeSaccharomyces cerevisiaeGene Expression Regulation Enzymologic03 medical and health scienceschemistry.chemical_compoundBiosynthesisValosin Containing ProteinGene Expression Regulation FungalFatty acidsHypoxiaMolecular BiologyTranscription factorEndosomal Sorting Complexes Required for Transport030102 biochemistry & molecular biologybiologyChemistryIron deficiencyEndoplasmic reticulumMembrane ProteinsUbiquitin-Protein Ligase ComplexesIron DeficienciesCell Biologybiology.organism_classificationYeastYeastUbiquitin ligase030104 developmental biologyFatty acid desaturaseBiochemistryProteasomebiology.proteinStearoyl-CoA DesaturaseTranscription FactorsColdBiochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
researchProduct

Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events

2018

Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, th…

0301 basic medicineSaccharomyces cerevisiae ProteinsMonosaccharide Transport ProteinsEvolution030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeDehydration-rehydration03 medical and health sciencesGlucosidesBehavior and Systematicsα-Glucoside transporterMembrane proteinsGeneticsViability assayDesiccationLipid bilayerEcology Evolution Behavior and SystematicsMicrobial ViabilitySymportersbiologyStrain (chemistry)EcologyCell MembraneBiological TransportTransporterbiology.organism_classificationAnhydrobiosisYeastYeast030104 developmental biologyInfectious DiseasesBiochemistryMembrane proteinAnhydrobiosis; Dehydration-rehydration; Membrane proteins; Yeast; α-Glucoside transporter; Ecology Evolution Behavior and Systematics; Genetics; Infectious DiseasesIntracellular
researchProduct

Biotechnological impact of stress response on wine yeast.

2016

Wine yeast deals with many stress conditions during its biotechnological use. Biomass production and its dehydration produce major oxidative stress, while hyperosmotic shock, ethanol toxicity and starvation are relevant during grape juice fermentation. Most stress response mechanisms described in laboratory strains of Saccharomyces cerevisiae are useful for understanding the molecular machinery devoted to deal with harsh conditions during industrial wine yeast uses. However, the particularities of these strains themselves, and the media and conditions employed, need to be specifically looked at when studying protection mechanisms.

0301 basic medicineSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiomassWineSaccharomyces cerevisiaeApplied Microbiology and BiotechnologyFight-or-flight response03 medical and health sciencesVitisWinebiologyDehydrationbusiness.industryfood and beveragesbiology.organism_classificationYeastBiotechnologyFruit and Vegetable JuicesYeast in winemakingOxidative Stress030104 developmental biologyFermentationFermentationStress conditionsbusinessBiotechnologyLetters in applied microbiology
researchProduct