Search results for "Saccharomyces"

showing 10 items of 861 documents

Molecular strategies to increase yeast iron accumulation and resistance.

2018

All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron at physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker’s yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constituti…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticIronSaccharomyces cerevisiaeBiophysicsSaccharomyces cerevisiaeBiochemistryCofactorBiomaterials03 medical and health sciencesFet3Gene Expression Regulation FungalCth2medicineBaker’s yeastYpk1Transcription factorAlleleschemistry.chemical_classificationReactive oxygen speciesbiologyKinaseIron deficiencyRespirationMetals and AlloysIron deficiencybiology.organism_classificationmedicine.diseaseYeastCell biologyIron toxicity030104 developmental biologychemistryIron-deficiency anemiaChemistry (miscellaneous)biology.proteinAft1Metallomics : integrated biometal science
researchProduct

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

2015

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityPopulationRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeChromatin and EpigeneticsRegulonGenètica molecular03 medical and health sciencesTranscripció genèticaTranscription (biology)GeneticsGene RegulationRNA MessengereducationGeneRegulation of gene expressionGeneticsMessenger RNAeducation.field_of_studyOrganelle BiogenesisbiologyGene regulation Chromatin and EpigeneticsRNA-Binding ProteinsRNAGenes rRNACell biologyGenes Mitochondrial030104 developmental biologyGene Expression Regulationbiology.proteinRNARibosomes
researchProduct

Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures

2016

To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilitySaccharomyces cerevisiaeBiophysicsSaccharomyces cerevisiaeProtein degradationBiochemistryRibosomeRibostasis03 medical and health sciencesStructural BiologyGene Expression Regulation FungalGene expressionProtein stabilityGeneticsProtein biosynthesisHomeostasisRNA MessengerMolecular BiologyRegulation of gene expressionTranslation ratebiologyTemperaturebiology.organism_classificationYeastYeastCell biology030104 developmental biologyProteostasisBiochemistryProtein BiosynthesisProteostasisRibosomes
researchProduct

Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

2016

BACKGROUND: The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. RESULTS: In order to cast light on the molecular func…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA polymerase IISaccharomyces cerevisiaeGenètica molecularNC203 medical and health sciencesSaccharomycesTranscripció genèticaGeneticsTATACryptic transcriptRNA polymerase II holoenzymeGeneticsbiologyGeneral transcription factorTATA-Box Binding ProteinTranscription initiationPhosphoproteinsTATA-Box Binding ProteinYeastRepressor Proteins030104 developmental biologyTATA-likebiology.proteinTranscription factor II FATP-Binding Cassette TransportersRNA Polymerase IITranscription factor II DTranscriptomeTranscription factor II BProteïnesTranscription factor II AResearch ArticleBiotechnologyTranscription Factors
researchProduct

The SAGA/TREX‑2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Abstract Background Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt–Ada–Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Results Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitmen…

0301 basic medicineSaccharomyces cerevisiae Proteinslcsh:QH426-470Transcription GeneticSAGASaccharomyces cerevisiaeBiologySus103 medical and health sciencesTranscripció genèticaTranscription (biology)Stress PhysiologicalGene Expression Regulation FungalCoactivatorGeneticsTranscriptional regulationRNA MessengerPromoter Regions GeneticMolecular BiologyGeneGeneral transcription factorResearchEukaryotic transcriptionNuclear ProteinsRNA-Binding ProteinsRNA FungalCell biologylcsh:Genetics030104 developmental biologyChIP-exoRegulatory sequenceTrans-ActivatorsTranscription factor II DTranscriptionGenèticaProtein BindingGRO
researchProduct

A comparative study of the degradation of yeast cyclins Cln1 and Cln2.

2016

The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half‐life but, while Cln2 degradation depends on ubiquitin ligases SCFG rr1 and SCFC dc4, Cln1 is affected only by SCFG rr1. Degradation analysis of chimeric cyclins, constructed by combining fragments from Cln1 and Cln2, identifies the N‐terminal sequence of the proteins…

0301 basic medicineSaccharomyces cerevisiaeSaccharomyces cerevisiaeGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineUbiquitincyclinNuclear export signalResearch ArticlesCyclinbiologyChemistryCln2Cln1SCF ubiquitin ligaseCell cyclebiology.organism_classificationYeastCell biology030104 developmental biologybiology.proteincell cycleNuclear transport030217 neurology & neurosurgeryFunction (biology)Research ArticleFEBS open bio
researchProduct

Cellular Injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica Exposed to Drying and Subsequent Heat Treatment in Milk Powder

2018

International audience; Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100 degrees C, for 30 and 120 s. For each condition, the percentage of unc…

0301 basic medicineSalmonellalcsh:QR1-502medicine.disease_causelcsh:Microbiologyperméabilité membranairechemistry.chemical_compound[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood sciencedryingOriginal Researchpropidium iodidebiologyChemistryMicrobiology and Parasitologyplasma-membraneSalmonella entericainfant formulaMicrobiologie et ParasitologieSalmonella entericaAlimentation et Nutritionsaccharomyces-cerevisiaeenterobacter-sakazakiitraitement thermiqueséchageMicrobiology (medical)Water activityMembrane permeabilitydesiccation tolerance030106 microbiologylow-water activityMicrobiologyrespiratory activity03 medical and health sciencesCronobacter sakazakiimedicineFood and NutritionPropidium iodideactivation respiratoireEscherichia colifoodborne pathogensheat treatmentbiology.organism_classificationCronobacter sakazakii030104 developmental biologymembrane permeabilitythermal inactivationSalmonella enterica;Cronobacter sakazakii;membrane permeability;respiratory activity;heat treatment;dryingescherichia-coliBacteria
researchProduct

Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle

2017

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere r…

0301 basic medicineSenescenceTelomeraseSaccharomyces cerevisiae ProteinssenescenceDNA damageR-loopTelomere-Binding ProteinsSaccharomyces cerevisiaeBiologyDDRGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesRif2Cellular SenescenceTelomere-binding proteinRNA-DNA hybridtelomereBiochemistry Genetics and Molecular Biology (all)Telomere-Binding ProteinCell CycleRNANucleic Acid HybridizationRecombinational DNA RepairTERRARepressor ProteinMolecular biologyRat1ExoribonucleaseTelomereRepressor Proteins030104 developmental biologyCell AgingExoribonucleasesR-loopRNase H2Cell agingSaccharomyces cerevisiae ProteinDNA Damage
researchProduct

Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia

2016

Apple chicha is a fresh low alcoholic beverage elaborated by aboriginal communities of Andean Patagonia (Argentina and Chile). In the present work, we identified the yeast microbiota associated with this fermentation, and characterized genetically those belonging to the genus Saccharomyces. Both Saccharomyces cerevisiae and S. uvarum were found in the analyzed fermentations. Phylogenetic and population structure analyses based on genes sequence analysis were carried out for both S. cerevisiae and S. uvarum strains obtained in this study and a set of additional strains from diverse origins. The results demonstrate that S. cerevisiae strains from apple chicha belong to the big group of wine/E…

0301 basic medicineSequence analysis030106 microbiologySaccharomyces cerevisiaePopulationArgentinaINGENIERÍAS Y TECNOLOGÍASAdmixtureApplied Microbiology and BiotechnologyMicrobiologyBiotecnología IndustrialSaccharomyces03 medical and health sciencesBotanyChileDNA FungalDomesticationeducationPhylogenyWineeducation.field_of_studyPhylogenetic treebiologyAlcoholic BeveragesMapuche//purl.org/becyt/ford/2.9 [https]Sequence Analysis DNAGeneral MedicineSouth Americabiology.organism_classificationYeastHolartic//purl.org/becyt/ford/2 [https]MalusFermentationFermentationYeast Diversity
researchProduct

In vitro versus in vivo compositional landscapes of histone sequence preferences in eucaryotic genomes

2018

Abstract Motivation Although the nucleosome occupancy along a genome can be in part predicted by in vitro experiments, it has been recently observed that the chromatin organization presents important differences in vitro with respect to in vivo. Such differences mainly regard the hierarchical and regular structures of the nucleosome fiber, whose existence has long been assumed, and in part also observed in vitro, but that does not apparently occur in vivo. It is also well known that the DNA sequence has a role in determining the nucleosome occupancy. Therefore, an important issue is to understand if, and to what extent, the structural differences in the chromatin organization between in vit…

0301 basic medicineStatistics and Probabilityved/biology.organism_classification_rank.speciesComputational biologySaccharomyces cerevisiaeGenomeBiochemistryDNA sequencingHistones03 medical and health sciences0302 clinical medicineIn vivoComputational Theory and MathematicNucleosomeAnimalsModel organismCaenorhabditis elegansMolecular BiologySequence (medicine)GenomebiologySettore INF/01 - Informaticaved/biologyComputer Science ApplicationChromatinComputer Science ApplicationsChromatinNucleosomesComputational Mathematics030104 developmental biologyHistoneEukaryotic CellsComputational Theory and Mathematicsbiology.proteinComputer Vision and Pattern RecognitionSequence Analysis030217 neurology & neurosurgery
researchProduct