Search results for "Sarcophyton"
showing 3 items of 3 documents
2021
The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolite…
Oxygenated Cembrene Diterpenes from Sarcophyton convolutum: Cytotoxic Sarcoconvolutum A–E
2021
The soft coral genus Sarcophyton contains the enzymatic machinery to synthesize a multitude of cembrene-type diterpenes. Herein, highly oxygenated cembrenoids, sarcoconvolutum A–E (1–5) were purified and characterized from an ethyl acetate extract of the red sea soft coral, Sarcophyton convolutum. Compounds were assemblies according to spectroscopic methods including FTIR, 1D- and 2D-NMR as well as HRMS. Metabolite cytotoxicity was tested against lung adenocarcinoma, cervical cancer, and oral-cavity carcinoma (A549, HeLa and HSC-2, respectively). The most cytotoxic compound, (4) was observed to be active against cell lines A549 and HSC-2 with IC50 values of 49.70 and 53.17 μM, respectively.
Sarcoehrenbergilides D–F: cytotoxic cembrene diterpenoids from the soft coral Sarcophyton ehrenbergi
2019
A solvent extract of the soft coral Sarcophyton ehrenbergi afforded cembrene diterpenoids, sarcoehrenbergilid D–F (1–3). Chemical structures were established by modern spectroscopic techniques with absolute stereochemistries determined by circular dichroism (CD) and time-dependent density functional theory electronic CD calculations (TDDFT-ECD). Cytotoxicity activities for 1–3 were evaluated against three human cancer cell lines: lung (A549), colon (Caco-2) and liver (HepG2).