Search results for "Scaffolds"

showing 10 items of 208 documents

Biomaterials and bioactive molecules to drive differentiation in striated muscle tissue engineering

2015

International audience; The generation of engineered tissues and organs has entered into the clinical practice in response to the chronic lack of organ donors. In particular, for the skeletal and cardiac muscles the translational potential of tissue engineering approaches has clearly been shown, even though the construction of these tissues lags behind others given the hierarchical, highly organized architecture of striated muscles. Failure of the cardiac tissue leads to cardiovascular diseases, which are the leading cause of death in the developed world (Di Felice et al., 2014). On the other hand, there are many clinical cases where the loss of skeletal muscle due to a traumatic injury, an…

Muscle tissueStriated muscle tissuePathologymedicine.medical_specialtyPhysiology030204 cardiovascular system & hematologyRegenerative MedicineRegenerative medicinelcsh:PhysiologyBiomaterials03 medical and health sciencescardiac tissue engineering0302 clinical medicineTissue engineeringPhysiology (medical)[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyMedicine[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyskeletal muscle030304 developmental biologyDenervation0303 health scienceslcsh:QP1-981Tissue Engineeringbusiness.industryRegeneration (biology)Editorial ArticleSkeletal musclevasculature nicheBiomaterial3. Good healthmedicine.anatomical_structureTraumatic injuryscaffoldscardiac tissue engineering; regenerative medicine; scaffolds; skeletal muscle; stem cell transplantation; vasculature nichebusinessStem Cell Transplantation
researchProduct

Optimization of a decellularized protocol of porcine tracheas. Long-term effects of cryopreservation. A histological study

2021

[EN] Objective: The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. Methods: Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from …

OctoxynolSwine0206 medical engineeringTracheal stenosisBiomedical EngineeringMedicine (miscellaneous)Bioengineering02 engineering and technologyCryopreservationBiomaterialsAndrology03 medical and health sciences0302 clinical medicineMedicineSDSCryopreservationDecellularizationTissue EngineeringTissue Scaffoldsbusiness.industryTracheal histologyDecellularized tracheasAirway tissue engineeringGeneral Medicine020601 biomedical engineeringTracheal StenosisSus scrofa domesticaExtracellular MatrixTrachea030220 oncology & carcinogenesisFISICA APLICADAbusiness
researchProduct

Preparation and characterization of multilayer porous PLA scaffolds

2013

PLA scaffolds biomaterials
researchProduct

MATERIALI POLIMERICI PER LA PRODUZIONE DI TESSUTI BIOINGEGNERIZZATI

2010

POLIMERISettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSCAFFOLDS RIGENERAZIONE
researchProduct

Cardiac tissue engineering: a reflection after a decade of hurry

2014

The heart is a perfect machine whose mass is mainly composed of cardiomyocytes, but also fibroblasts, endothelial, smooth muscle, nervous, and immune cells are represented. One thousand million cardiomyocytes are estimated to be lost after myocardial infarction, their loss being responsible for the impairment in heart contractile function (Laflamme and Murry, 2005). The potential success of cardiac cell therapy relies almost completely on the ability of the implanted cells to differentiate toward mature cardiomyocytes. These cells must be able to reinforce the pumping activity of the injured heart in the absence of life-threatening arrhythmias due to electrophysiological incompatibility. Th…

Pathologymedicine.medical_specialtyheart regenerationPhysiologycardiac progenitor cellsClinical uses of mesenchymal stem cellsproto-tissueslcsh:PhysiologyTissue engineeringPhysiology (medical)MedicineInduced pluripotent stem cellStem cell transplantation for articular cartilage repairlcsh:QP1-981business.industryRegeneration (biology)Mesenchymal stem cellOpinion Articletissue engineeringscaffoldsStem cellbusinessNeurosciencecardiac progenitor cells proto-tissues heart regeneration tissue engineering scaffolds biomaterialsbiomaterialsAdult stem cell
researchProduct

Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes

2019

Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the…

PhysiologyCell MembranesCell Culture TechniquesBiocompatible Materials02 engineering and technologyEpitheliumTissue engineeringAnimal CellsAbsorbable ImplantsMaterials TestingElectric ImpedanceMedicine and Health SciencesLungTissue homeostasisBarrier functionStaining0303 health sciencesMultidisciplinaryTissue ScaffoldsTight junctionPolyethylene TerephthalatesChemistryQRCell Staining021001 nanoscience & nanotechnologyMembrane StainingElectrophysiologyMembranePhysical SciencesMedicineCytokinesBiological CulturesCellular Structures and OrganellesJunctional ComplexesCellular TypesAnatomy0210 nano-technologyResearch ArticleCell PhysiologySciencePolyestersMaterials ScienceMaterial PropertiesResearch and Analysis MethodsMembrane PotentialPermeabilityCell LineTight Junctions03 medical and health sciencesCell AdhesionHumans030304 developmental biologyBiochemistry Genetics and Molecular Biology (all)Tissue EngineeringBiology and Life SciencesEpithelial CellsMembranes ArtificialCell BiologyCell CulturesBiological TissueAgricultural and Biological Sciences (all)Specimen Preparation and TreatmentCell culturePermeability (electromagnetism)BiophysicsCytokine secretionPLOS ONE
researchProduct

Preparation of Poly(l-lactic acid) Scaffolds by Thermally Induced Phase Separation: Role of Thermal History

2018

Abstract Poly-L-Lactic Acid (PLLA) scaffolds for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofurane. An extension to solution of a previously developed method for solidification from the melt was adopted, the technique being based on a Continuous Cooling Transformation (CCT) approach, consisting in recording the thermal history of rapidly cooled samples and analysing the resulting morphology. Different foams were produced by changing the thermal history, the dioxane to THF ratio (50/50, 70/30, 90/10 v/v) and the polymer concentration (2, 2.5, 4 ° wt) in the starting ternary solution. Pore size, porosity, melting and crys…

Poly l lactic acidPore sizeMorphology (linguistics)Materials sciencePolymers and PlasticsBiocompatibilitySpinodal decompositionGeneral Chemical Engineering02 engineering and technology010402 general chemistryMEMBRANES01 natural sciencesSPINODAL DECOMPOSITIONIndustrial and Manufacturing EngineeringBIOCOMPATIBILITYPOROUS SCAFFOLDSTISSUE REGENERATIONTissue engineeringMaterials ChemistryPOLYMERIC SCAFFOLDSTernary numeral systemPORE-SIZECELL TRANSPLANTATION021001 nanoscience & nanotechnology0104 chemical sciencesMembraneChemical engineeringMORPHOLOGY0210 nano-technologyBEHAVIOR
researchProduct

3D cultures of rat astrocytes and brain capillary endothelial cells on Poly-L-lactic acid scaffolds

2016

Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivo tissues with morphological and functional features similar to the biological tissue of the human body. In this communication we report setting of three-dimensional structures able to mimic the extracellular matrix of the nervous system: we prepared Poly-L-Lactic Acid (PLLA) porous scaffolds via thermally induced phase separation (TIPS), and investigated the parameters that influence porosity, average pore size and degree of interconnection, i.e. polymer concentration, temperature and time of process. Astrocytes and brain capillary endothelial cells (BCECs) were cultured on these three-…

Poly-L-Lactic Acid (PLLA) porous scaffolds Astrocytes brain capillary endothelial cells (BCECs) 2D culture systems and 3D culture systemsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/13 - Biologia ApplicataSettore BIO/10 - BiochimicaSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Biocompatibility evaluation of PLLA scaffolds for vascular tissue engineering

2015

Poly-L-lactic acid (PLLA), a hemicrystalline material, has been extensively studied in applications of engineered tissues, because it is biodegradable, absorbable and it supports cell attachment and growth. The purpose of this study is to evaluate tissue/ material interactions, neovascularization and the biocompatibility of PLLA by optical and scanning electron microscopy in a model of animal implant. PLLA porous disks were implanted into the dorsal subcutis of BALB/C mice for 1, 2, 3, and 8 weeks. The bioptic samples of excised PLLA and the surrounding tissue were evaluated for inflammatory response and tissue ingrowth. The samples were divided in two halves: one was fixed in neutral buffe…

Poly-L-lactic acid; (PLLA); biocompatibility; immune responce; implant; scaffold; angiogenesisBiocompatibility PLLA scaffolds angiogenesis tissue engineering
researchProduct

Polyaspartamide-polylactide electrospun scaffolds for potential topical release of ibuprofen

2012

Polyaspartamide polylactide electrospun scaffolds ibuprofen drug delivery
researchProduct