Search results for "Scala"
showing 10 items of 1416 documents
State-space formulation of scalar Preisach hysteresis model for rapid computation in time domain
2015
A state-space formulation of classical scalar Preisach model (CSPM) of hysteresis is proposed. The introduced state dynamics and memory interface allow to use the state equation, which is rapid in calculation, instead of the original Preisach equation. The main benefit of the proposed modeling approach is the reduced computational effort which requires only a single integration over the instantaneous line segment in the Preisach plane. Numerical evaluations of the computation time and model accuracy are provided in comparison to the CSPM which is taken as a reference model.
Framework for complex quantum state generation and coherent control based on on-chip frequency combs
2018
Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.
Run-time scalable NoC for FPGA based virtualized IPs
2017
The integration of virtualized FPGA-based hardware accelerators in a cloud computing is progressing from time to time. As the FPGA has limited resources, the dynamic partial reconfiguration capability of the FPGA is considered to share resources among different virtualized IPs during runtime. On the other hand, the NoC is a promising solution for communication among virtualized FPGA-based IPs. However, not all the virtualized regions of the FPGA will be active all the time. When there is no demand for virtualized IPs, the virtualized regions are loaded with blank bitstreams to save power. However, keeping active the idle components of the NoC connecting with the idle virtualized regions is …
Hexacarbonyls of Mo, W, and Sg: Metal–CO Bonding Revisited
2017
Calculations of the first bond dissociation energies (FBDEs) and other molecular properties of M(CO)6, where M = Mo, W, and Sg, have been performed using a variety of nonrelativistic and relativistic methods, such as ZORA-DFT, X2c+AMFI-CCSD(T), and Dirac–Coulomb density functional theory. The aim of the study is to assist experiments on the measurements of the FBDE of Sg(CO)6. We have found that, different from the results published earlier, the metal–CO bond in Sg(CO)6 should be weaker than that in W(CO)6. A comparison of the relativistic and nonrelativistic FBDE values, as well as molecular orbital and vibrational frequency analyses within both the nonrelativistic and relativistic approac…
Scalable and Selective Preparation of 3,3′,5,5′-Tetramethyl-2,2′-biphenol
2016
Biphenols are indispensable building blocks in ligand systems for organic catalysis. 3,3′5,5′-Tetramethyl-2,2′-biphenol is a particular versatile motif in different catalytic systems. We developed an easy to perform and scalable process to give access to large quantities of this important building block by the use of selenium dioxide, a common and readily available oxidizer.
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
2020
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
Cloud detection on the Google Earth engine platform
2017
The vast amount of data acquired by current high resolution Earth observation satellites implies some technical challenges to be faced. Google Earth Engine (GEE) platform provides a framework for the development of algorithms and products built over this data in an easy and scalable manner. In this paper, we take advantage of the GEE platform capabilities to exploit the wealth of information in the temporal dimension by processing a long time series of satellite images. A cloud detection algorithm for Landsat-8, which uses previous images of the same location to detect clouds, is implemented and tested on the GEE platform.
The Bias of combining variables on fish's aggressive behavior studies.
2019
Made available in DSpace on 2019-10-06T16:27:42Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-07-01 Quantifying animal aggressive behavior by behavioral units, either displays or attacks, is a common practice in animal behavior studies. However, this practice can generate a bias in data analysis, especially when the variables have different temporal patterns. This study aims to use Bayesian Hierarchical Linear Models (B-HLMs) to analyze the feasibility of pooling the aggressive behavior variables of four cichlids species. Additionally, this paper discusses the feasibility of combining variables by examining the usage of different sample sizes and family distributions to aggressive …
Bayesian analysis improves experimental studies about temporal patterning of aggression in fish.
2017
Made available in DSpace on 2018-12-11T17:15:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-12-01 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) This study aims to describe a Bayesian Hierarchical Linear Model (HLM) approach for longitudinal designs in fish's experimental aggressive behavior studies as an alternative to classical methods In particular, we discuss the advantages of Bayesian analysis in dealing with combined variables, non-statistically significant results and required sample size using an experiment of angelfish (Pterophyllum scalare) species as case study. Groups of 3 individuals were subjected to daily observations recorded for 10 min durin…
Hybrid P2P schemes for remote terrain interactive visualization systems
2013
Over the last few years, there has been a lot of development of interactive terrain visualization applications using remote databases. One of the main problems that these applications must face is scalability. These applications usually use a client-server model that cannot support a large number of concurrent requests without using a considerable number of servers. In this paper, we present a full comparative study of new hybrid P2P schemes for terrain interactive visualization systems. The performance evaluation results show that the best strategy consists of avoiding the periodical reporting among peer nodes about the current information contained in each node, while using some servers a…