Search results for "Scanning tunneling microscope"

showing 10 items of 127 documents

Temperature-driven spin reorientation transition inFe∕Mo(110)nanostructures

2007

Using low-temperature spin polarized scanning tunneling microscopy and spectroscopy, we observed a temperature-driven spin-reorientation transition (SRT) in Fe double layer (DL) nanostructures grown by step-flow growth on Mo(110). Magnetization components along the vertical and horizontal directions were detected with $4∕16$ ML Co∕10 ML $\mathrm{Au}∕\mathrm{W}(110)$ tips with out-of-plane (4 ML Co) and in-plane (16 ML Co) magnetic sensitivities. The magnetic easy axis of the Fe DL nanostructures continuously rotates from the vertical direction at $5\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ to an in-plane direction at $20\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The rotation angle is independent …

Materials scienceCondensed matter physicsSpin polarizationSpin polarized scanning tunneling microscopyCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionMagnetizationMagnetic anisotropylawVertical directionScanning tunneling microscopeSpectroscopySpin (physics)Physical Review B
researchProduct

STM evidence of room-temperature charge instabilities inNbSe3

1996

${\mathrm{NbSe}}_{3}$ is a quasi-low-dimensional compound with unique properties. Two incommensurate charge-density waves appear at low temperatures, which slide under the application of an electric field. The mechanism of sliding is not fully understood and it was speculated that precursor effects may be present above the onset temperatures. Scanning tunneling microscopy offers a unique tool to search for such charge instabilities and clear evidence is given for their existence at room temperature. \textcopyright{} 1996 The American Physical Society.

Materials scienceCondensed matter physicslawElectric fieldCharge (physics)Scanning tunneling microscopelaw.inventionPhysical Review B
researchProduct

Electron quantization in arbitrarily shaped gold islands on MgO thin films

2013

Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when considering the true atomic structure of the aggregates via a densit…

Materials scienceCondensed matter physicsta114ElectronCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionQuantization (physics)Atomic orbitallawQuantum dotMolecular orbitalScanning tunneling microscopeThin filmSpectroscopy
researchProduct

Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001)

2020

AbstractThe adsorption behavior of single CO molecules at 4 K bound to Au adatoms on a Ag(001) metal surface is studied with scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). In contrast to earlier observations two different binding configurations are observed—one on top of a Au adatom and the other one adsorbed laterally to Au on Ag(001). Moreover, IETS reveals different low-energy vibrational energies for the two binding sites as compared to the one for a single CO molecule bound to Ag(001). Density functional theory (DFT) calculations of the adsorption energies, the diffusion barriers, and the vibrational frequencies of the CO molecule on the diffe…

Materials scienceDiffusionAg(001)02 engineering and technology01 natural sciencesCatalysiskultaCatalysislaw.inventionMetalAdsorptionlaw0103 physical sciencesMoleculeAu010306 general physicsInelastic electron tunneling spectroscopyGeneral Chemistry021001 nanoscience & nanotechnology3. Good healthCOCrystallographyadsorptionvisual_artvisual_art.visual_art_mediumDensity functional theoryScanning tunneling microscope0210 nano-technologyadsorptio
researchProduct

Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

2017

We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground sta…

Materials scienceFOS: Physical sciences02 engineering and technologyElectronic structure01 natural sciencesMolecular physicsAtomic unitslaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesMicroscopyMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsFELIX Molecular Structure and DynamicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsScanning Probe MicroscopyBilayerRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyDensity functional theoryScanning tunneling microscope0210 nano-technologyGround state
researchProduct

Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calcul…

2010

The perimeter of oxide-supported metal particles is suggested to be of pivotal importance for various catalytic processes. To elucidate the underlying effects, the electronic properties of edge and corner atoms of planar Au clusters on MgO/Ag(001) thin films have been analyzed with scanning tunneling microscopy and electronic structure calculations. The low-coordinated perimeter atoms are characterized by a high density of $s$-derived states at the Fermi level. Those states accommodate transfer electrons from the MgO/Ag substrate, which render the perimeter atoms negatively charged. In contrast, the inner atoms of the island are not affected by the charge transfer and remain neutral. This c…

Materials scienceFermi levelScanning tunneling spectroscopyElectronElectronic structureSubstrate (electronics)Condensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic Materialslaw.inventionsymbols.namesakeQuantum dotlawPhysics::Atomic and Molecular ClusterssymbolsCluster (physics)Atomic physicsScanning tunneling microscopePhysical Review B
researchProduct

High-resolution mapping of the optical near-field components at a triangular nano-aperture.

2009

A triangular nano-aperture in an aluminum film was used as a probe in a scanning near-field optical microscope (SNOM) to image single fluorescent molecules with an optical resolution down to 30 nm. The differently oriented molecules were employed as point detectors to map the vectorial components of the electric field distribution at the illuminated triangular aperture. The good agreement of the experimental results with numerical simulations enabled us to determine both the field map at a triangular aperture and the exact orientations of the probing molecules.

Materials scienceField (physics)Aperturebusiness.industryResolution (electron density)Physics::OpticsNear and far fieldAtomic and Molecular Physics and Opticslaw.inventionOpticsOptical microscopelawElectric fieldNear-field scanning optical microscopeScanning tunneling microscopebusinessOptics express
researchProduct

Atomic-resolution imaging of clean and hydrogen-terminated C(100)-(2×1)diamond surfaces using noncontact AFM

2010

Received 22 April 2010; published 14 May 2010High-purity, type IIa diamond is investigated by noncontact atomic force microscopy NC-AFM .Wepresent atomic-resolution images of both the electrically conducting hydrogen-terminated C 100 - 2 1 :Hsurface and the insulating C 100 - 2 1 surface. For the hydrogen-terminated surface, a nearly square unitcell is imaged. In contrast to previous scanning tunneling microscopy experiments, NC-AFM imaging allowsboth hydrogen atoms within the unit cell to be resolved individually, indicating a symmetric dimer alignment.Upon removing the surface hydrogen, the diamond sample becomes insulating. We present atomic-resolutionimages, revealing individual C-C dim…

Materials scienceHydrogenAtomic force microscopyDimerchemistry.chemical_elementDiamondNanotechnologyConductive atomic force microscopyengineering.materialCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistryAtomic resolutionlawengineeringScanning tunneling microscopePhysical Review B
researchProduct

Electronic structure of MgO-supported Au clusters: quantum dots probed by scanning tunneling microscopy.

2007

We investigate via density functional theory (DFT) the appearance of small MgO-supported gold clusters with 8 to 20 atoms in a scanning tunneling microscope (STM) experiment. Comparison of simulations of ultrathin films on a metal support with a bulk MgO leads to similar results for the cluster properties relevant for STM. Simulated STM pictures show the delocalized states of the cluster rather than the atomic structure. This finding is due to the presence of s- derived delocalized states of the cluster near the Fermi energy. The properties of theses states can be understood from a jellium model for monovalent gold.

Materials scienceJelliumScanning tunneling spectroscopyGeneral Physics and AstronomySpin polarized scanning tunneling microscopyConductive atomic force microscopyMolecular physicsElectrochemical scanning tunneling microscopelaw.inventionCondensed Matter::Materials ScienceDelocalized electronlawCondensed Matter::SuperconductivityPhysics::Atomic and Molecular ClustersCluster (physics)Atomic physicsScanning tunneling microscopePhysical review letters
researchProduct

Magnetic Anisotropies and Coupling Mechanisms inFe/Mo(110)Nanostripes

2005

Using low-temperature (5 K) spin-polarized scanning tunneling microscopy, we have studied the morphology and magnetic properties of monolayer (ML) and double layer (DL) thick Fe nanowires grown by step flow on a Mo(110) single crystal. Magnetic contrast has been obtained using tungsten tips covered by Au/Co thin films. We find that the DL Fe nanowires, similarly to ML Fe nanowires, are perpendicularly magnetized. Because of the dipolar coupling, separated DL Fe nanowires are antiferromagnetically coupled. DL wires that are touching at step edges are ferromagnetically ordered due to direct exchange coupling. We measured the widths of the magnetic domain walls in the ML and DL Fe nanowires. T…

Materials scienceMagnetic domainCondensed matter physicsNanowireGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionCondensed Matter::Materials ScienceMagnetic anisotropyDomain wall (magnetism)lawMonolayerScanning tunneling microscopeSingle crystalMagnetic dipole–dipole interactionPhysical Review Letters
researchProduct