Search results for "Scanning tunneling microscope"
showing 10 items of 127 documents
Temperature-driven spin reorientation transition inFe∕Mo(110)nanostructures
2007
Using low-temperature spin polarized scanning tunneling microscopy and spectroscopy, we observed a temperature-driven spin-reorientation transition (SRT) in Fe double layer (DL) nanostructures grown by step-flow growth on Mo(110). Magnetization components along the vertical and horizontal directions were detected with $4∕16$ ML Co∕10 ML $\mathrm{Au}∕\mathrm{W}(110)$ tips with out-of-plane (4 ML Co) and in-plane (16 ML Co) magnetic sensitivities. The magnetic easy axis of the Fe DL nanostructures continuously rotates from the vertical direction at $5\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ to an in-plane direction at $20\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The rotation angle is independent …
STM evidence of room-temperature charge instabilities inNbSe3
1996
${\mathrm{NbSe}}_{3}$ is a quasi-low-dimensional compound with unique properties. Two incommensurate charge-density waves appear at low temperatures, which slide under the application of an electric field. The mechanism of sliding is not fully understood and it was speculated that precursor effects may be present above the onset temperatures. Scanning tunneling microscopy offers a unique tool to search for such charge instabilities and clear evidence is given for their existence at room temperature. \textcopyright{} 1996 The American Physical Society.
Electron quantization in arbitrarily shaped gold islands on MgO thin films
2013
Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when considering the true atomic structure of the aggregates via a densit…
Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001)
2020
AbstractThe adsorption behavior of single CO molecules at 4 K bound to Au adatoms on a Ag(001) metal surface is studied with scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). In contrast to earlier observations two different binding configurations are observed—one on top of a Au adatom and the other one adsorbed laterally to Au on Ag(001). Moreover, IETS reveals different low-energy vibrational energies for the two binding sites as compared to the one for a single CO molecule bound to Ag(001). Density functional theory (DFT) calculations of the adsorption energies, the diffusion barriers, and the vibrational frequencies of the CO molecule on the diffe…
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
2017
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground sta…
Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calcul…
2010
The perimeter of oxide-supported metal particles is suggested to be of pivotal importance for various catalytic processes. To elucidate the underlying effects, the electronic properties of edge and corner atoms of planar Au clusters on MgO/Ag(001) thin films have been analyzed with scanning tunneling microscopy and electronic structure calculations. The low-coordinated perimeter atoms are characterized by a high density of $s$-derived states at the Fermi level. Those states accommodate transfer electrons from the MgO/Ag substrate, which render the perimeter atoms negatively charged. In contrast, the inner atoms of the island are not affected by the charge transfer and remain neutral. This c…
High-resolution mapping of the optical near-field components at a triangular nano-aperture.
2009
A triangular nano-aperture in an aluminum film was used as a probe in a scanning near-field optical microscope (SNOM) to image single fluorescent molecules with an optical resolution down to 30 nm. The differently oriented molecules were employed as point detectors to map the vectorial components of the electric field distribution at the illuminated triangular aperture. The good agreement of the experimental results with numerical simulations enabled us to determine both the field map at a triangular aperture and the exact orientations of the probing molecules.
Atomic-resolution imaging of clean and hydrogen-terminated C(100)-(2×1)diamond surfaces using noncontact AFM
2010
Received 22 April 2010; published 14 May 2010High-purity, type IIa diamond is investigated by noncontact atomic force microscopy NC-AFM .Wepresent atomic-resolution images of both the electrically conducting hydrogen-terminated C 100 - 2 1 :Hsurface and the insulating C 100 - 2 1 surface. For the hydrogen-terminated surface, a nearly square unitcell is imaged. In contrast to previous scanning tunneling microscopy experiments, NC-AFM imaging allowsboth hydrogen atoms within the unit cell to be resolved individually, indicating a symmetric dimer alignment.Upon removing the surface hydrogen, the diamond sample becomes insulating. We present atomic-resolutionimages, revealing individual C-C dim…
Electronic structure of MgO-supported Au clusters: quantum dots probed by scanning tunneling microscopy.
2007
We investigate via density functional theory (DFT) the appearance of small MgO-supported gold clusters with 8 to 20 atoms in a scanning tunneling microscope (STM) experiment. Comparison of simulations of ultrathin films on a metal support with a bulk MgO leads to similar results for the cluster properties relevant for STM. Simulated STM pictures show the delocalized states of the cluster rather than the atomic structure. This finding is due to the presence of s- derived delocalized states of the cluster near the Fermi energy. The properties of theses states can be understood from a jellium model for monovalent gold.
Magnetic Anisotropies and Coupling Mechanisms inFe/Mo(110)Nanostripes
2005
Using low-temperature (5 K) spin-polarized scanning tunneling microscopy, we have studied the morphology and magnetic properties of monolayer (ML) and double layer (DL) thick Fe nanowires grown by step flow on a Mo(110) single crystal. Magnetic contrast has been obtained using tungsten tips covered by Au/Co thin films. We find that the DL Fe nanowires, similarly to ML Fe nanowires, are perpendicularly magnetized. Because of the dipolar coupling, separated DL Fe nanowires are antiferromagnetically coupled. DL wires that are touching at step edges are ferromagnetically ordered due to direct exchange coupling. We measured the widths of the magnetic domain walls in the ML and DL Fe nanowires. T…