Search results for "Self-Assembly"

showing 10 items of 438 documents

Self-assembled PAA-based nanoparticles as potential gene and protein delivery systems

2012

A series of nanoparticles is prepared via layer-by-layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptabl…

Materials Chemistry2506 Metals and AlloysLayer-by-layer assemblyPolymers and PlasticLightRotationStatic ElectricityElectron Spin Resonance SpectroscopyGene Transfer TechniquesBioengineeringSelf-assemblyHydrogen-Ion ConcentrationBiomaterialCell LineMolecular WeightDrug Delivery SystemsNanoparticlePolyaminesAnimalsNanoparticlesScattering RadiationSpin LabelsGene deliveryParticle SizeZeta-potentialBiotechnology
researchProduct

Fine-Tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes

2007

We have recently introduced a new method of creating ultrathin films [1–3] based on the electrostatic attraction between opposite charges. Consecutively, alternating adsorption of anionic and cationic polyelectrolytes leads to the formation of multilayer assemblies. Multilayer buildup is easily monitored by small angle x-ray scattering (SAXS). The total thickness of the multilayer assemblies increases linearly with the number of adsorbed layers, indicating a stepwise and regular deposition process. — Here, we report on the fine-tuning of the total film thickness by changing the ionic strength of the solvent from which the polyelectrolytes are adsorbed. When the anionic polyelectrolyte is ad…

SolventAdsorptionMaterials scienceChemical engineeringScatteringSmall-angle X-ray scatteringIonic strengthSelf-assemblyLayer (electronics)Polyelectrolyte
researchProduct

Front Cover: Facile Synthesis and Self‐Assembly of Zinc (2‐Diethoxyphosphorylethynyl)porphyrins (Eur. J. Inorg. Chem. 10/2019)

2019

Inorganic ChemistryFront coverChemistryPolymer chemistrychemistry.chemical_elementZincSelf-assemblyEuropean Journal of Inorganic Chemistry
researchProduct

Self-assembly mechanism of nanoparticles of Ni-based Prussian Blue analogues at the air/liquid interface: a synchrotron X-ray reflectivity study.

2015

Prussian Blue analogue (PBA) nanoparticles can be self-assembled at air/liquid interfaces to build novel materials with interesting magnetic features. Herein, we study the influence of the size of PBA Cs0.4 Ni[Cr(CN)6 ]0.9 and K0.25 Ni[Fe(CN)6 ]0.75 nanoparticles on the self-assembly behavior by synchrotron X-ray reflectivity. Both nanoparticles show similar Z-potential values. The phospholipid dipalmitoylphosphatidylcholine and the amino surfactant dimethyldioctadecylammonium have been used as Langmuir monolayers to anchor the PBA nanoparticles and study the interplay of forces directing the self-assembly of the nanoparticles at the surfactant/liquid interface. Whereas Cs0.4 Ni[Cr(CN)6 ]0.…

Prussian blueMaterials scienceX-RaysSupramolecular chemistryNanoparticleAtomic and Molecular Physics and OpticsX-ray reflectivityCrystallographychemistry.chemical_compoundchemistryPulmonary surfactantChemical engineeringNickelDipalmitoylphosphatidylcholineMonolayerNanoparticlesSelf-assemblyPhysical and Theoretical ChemistrySynchrotronsFerrocyanidesChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly via a novel microwave-assisted method: impact on triazine re…

2018

One-step methods for fabricating green materials endowed with diverse functions is a challenge to be overcome in terms of reducing environmental risk and cost. We report a fast and easy synthesis of multifunctional materials composed of only fluorescent dots with structural flexibility and high sorption capability. The synthesis consists of a one-pot microwave-assisted reaction for the simultaneous formation of graphene quantum dots (GQDs) from organic precursors and their spontaneous self-assembly forming porous architectures. The GQD-assemblies are robust and no signs of degradation were observed with most organic solvents. The ensuing GQDs and their porous solids were fully characterized…

Materials scienceChemical substanceGrapheneGeneral Chemical EngineeringChemistry (all)One-pot synthesisSorptionNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistrylawQuantum dotChemical Engineering (all)Self-assembly0210 nano-technologyPorous mediumBifunctionalRSC Advances
researchProduct

Gelation and gel properties of two- and three-component pyrene based low molecular weight organogelators

2011

The research described in this thesis covers the synthesis, characterization and the study of the gelation ability of fteen pyrene based low molecular weight organogelators (LMOGs). The gelation and gel properties were investigated by rheometry, scanning electron microscopy, di erential scanning calorimetry, UV-Vis and uorescence spectroscopy. The pyrene based LMOGs form complexes with 2,4,7-trinitro uorenone (TNF) and self-assemble non-covalently through - stacking, donor-acceptor and van der Waals interactions to form thermoreversible gels, which remain stable at least for two years. The strongest gels were obtained in primary alcohols whereas the poor solubility of TNF restricted gelatio…

geelitgelatorgel rheologyself-assemblyorganogelatorfysikaalinen kemialow molecular weight organogelatorsolubility parametersscanning electron microscopy
researchProduct

Ruthenium-Containing Block Copolymer Assemblies: Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and An…

2015

The use of self-assembled nanostructures consisting of red-light-responsive Ru(II)-containing block copolymers (BCPs) for anticancer phototherapy is demonstrated. Three Ru-containing BCPs with different molecular weights are synthesized. Each BCP contains a hydrophilic poly(ethylene glycol) block and an Ru-containing block. In the Ru-containing block, more than half of the side chains are coordinated with [Ru(2,2':6',2''-terpyridine)(2,2'-biquinoline)](2+) , resulting in more than 40 wt% Ru complex in the BCPs. The Ru complex acts as both a red-light-cleavable moiety and a photoactivated prodrug. Depending on their molecular weights, the BCPs assemble into micelles, vesicles, and large comp…

Materials scienceLightStereochemistryCell SurvivalPolymersBiomedical EngineeringPharmaceutical Sciencechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesMicelleRutheniumPolyethylene GlycolsBiomaterialschemistry.chemical_compoundNeoplasmsSide chainCopolymerMoietyHumansProdrugsMicellesPhototherapy021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesRutheniumNanostructuresMolecular WeightchemistrySelf-assemblyTerpyridine0210 nano-technologyEthylene glycolHydrophobic and Hydrophilic InteractionsHeLa CellsAdvanced healthcare materials
researchProduct

Incorporation of the bacterial reaction centre into dendrimersomes

2012

For the first time the ability of the first generation dendrimer belonging to the family of polyester-benzylether, (3,5)12G1-PE-BMPA-(OH)4, to form dendrimersomes is presented together with their capability to reconstitute the integral membrane protein complex called Reaction Centre (RC) purified from the photosynthetic bacterium Rhodobacter sphaeroides. Size, polydispersity and time stability of the empty and protein containing dendrimersomes are presented together with the photochemical activity of the guest protein. The RC presence appears to strongly enhance the self-assembly properties of the Janus dendrimer, leading to the formation of proteo-dendrimersomes showing a photochemical act…

Liposomefood.ingredientbiologyChemistrycharge recombination; dendrimersomes; dynamic light scattering; integral proteins; self-aggregationbiology.organism_classificationLecithinCrystallographyRhodobacter sphaeroidesColloid and Surface ChemistryfoodDynamic light scatteringDocking (molecular)DendrimerSelf-assemblyta116Integral membrane proteinColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Self-assembly of a chiral three-dimensional manganese(II)-copper(II) coordination polymer with a double helical architecture

2013

The use of the anionic dicopper(ii) complex, [CuII(mpba) 2]4- [mpba = N,N′-1,3-phenylenebis(oxamate)], as tetrakis(bidentate) metalloligand toward MnII ions in the presence of oxalate and the chiral (S)-trimethyl-(1-phenylethyl)ammonium cation affords the first example of a mixed oxalato/oxamato-based chiral 3D metal-organic polymer. © 2013 The Royal Society of Chemistry.

chemistry.chemical_classificationDenticityCoordination polymerInorganic chemistrychemistry.chemical_elementGeneral ChemistryPolymerManganeseCondensed Matter PhysicsCopperOxalateIonchemistry.chemical_compoundchemistryPolymer chemistryGeneral Materials ScienceSelf-assemblyCrystEngComm
researchProduct

Stimuli-responsive bile acid-based metallogels forming in aqueous media

2015

Abstract The synthesis and gelation properties of a picolinic acid conjugated bile acid derivative in the presence of metal salts along with the stimuli-responsiveness of the systems are reported. The gels are formed in the presence of Cu 2+ ions in the solvent systems composed of 30–50% of organic solvent (MeOH, acetonitrile, or acetone) in water. The gels respond to various stimuli: they can be formed upon sonication or shaking, and their gel–sol transformation can be triggered by a variety of chemical species. NMR, MS, and SEM techniques are exploited in order to gain a deeper insight on the self-assembled systems.

medicine.drug_classSonicationClinical BiochemistryConjugated systemPicolinic acidBiochemistrystimuli-responsiveBile Acids and Saltschemistry.chemical_compoundpicolinic acidEndocrinologyAcetonemedicineOrganic chemistrybile acidPicolinic AcidsAcetonitrileMolecular Biologyta116PharmacologyMolecular StructureBile acidOrganic Chemistryself-assemblyAmideschemistrySelf-assemblymetallogelGelsCopperDerivative (chemistry)Steroids
researchProduct