Search results for "Self-stabilization"
showing 2 items of 2 documents
Self-stabilizing Balls & Bins in Batches
2016
A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modelled as static balls into bins processes, where m balls (tasks) are to be distributed to n bins (servers). In a seminal work, [Azar et al.; JoC'99] proposed the sequential strategy Greedy[d] for n = m. When thrown, a ball queries the load of d random bins and is allocated to a least loaded of these. [Azar et al.; JoC'99] showed that d=2 yields an exponential improvement compared to d=1. [Berenbrink et al.; JoC'06] extended this to m ⇒ n, showing that the maximal load difference is independent of m for d=2 (in contrast…
Col : A Data Collection Protocol for Vanet
2012
International audience; In this paper, we present a protocol to collect data within a vehicular ad hoc network (VANET). In spite of the intrinsic dynamic of such network, our protocol simultaneously offers three relevant properties: (1) It allows any vehicle to collect data beyond its direct neighborhood (i.e., vehicles within direct communication range) using vehicle-to-vehicle communications only (i.e., the infrastructure is not required); (2) It tolerates possible network partitions; (3) It works on demand and stops when the data collection is achieved. To the best of our knowledge, this is the first collect protocol having these three characteristics. All that is chiefly obtained thanks…