Search results for "Sensitivity"

showing 10 items of 3059 documents

Optimum Design and Performance of an Electron Gun for a Ka-Band TWT

2019

This paper deals with optimum design and development of a thermionic electron gun to meet specified beam requirements within defined electric and geometric constraints for a Ka -band traveling wave tube (TWT) for space applications. The electron gun design is based on the Pierce method and carried out according to the iterative process indicated by Vaughan. The design of a periodic permanent magnet (PPM) beam focusing system for the stability of the beam is also required. A sensitivity analysis, by varying electric parameters and geometric parameters, is presented and taken into account as a fundamental role to the aim of optimizing the design of the Pierce gun. A cathode current value of 5…

010302 applied physicsBeam diameterMaterials sciencebusiness.industryTraveling-wave tubeSettore ING-INF/01 - Elettronica01 natural sciencesCathodeElectronic Optical and Magnetic Materialslaw.inventionSettore ING-IND/31 - ElettrotecnicaOpticslawcontrol grid electron gun PPM focusing system sensitivity analysis shadow grid TWTMagnet0103 physical sciencesKa bandElectrical and Electronic EngineeringbusinessBeam (structure)VoltageElectron gunIEEE Transactions on Electron Devices
researchProduct

A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells

2019

In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…

010302 applied physicsBrickTemperature sensitivityMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesReduced propertiesImpurity0103 physical sciencesOptoelectronicsWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

2019

Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluoresce…

010302 applied physicsMaterials scienceEquivalent series resistanceAmplifierPenning trap01 natural sciences7. Clean energySignalFourier transform ion cyclotron resonance010305 fluids & plasmasIonCrystal0103 physical sciencesAtomic physicsInstrumentationSensitivity (electronics)Review of Scientific Instruments
researchProduct

How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers

2019

The temperature sensitivity of the open circuit voltage of a solar cell is mainly driven by changes in the intrinsic carrier concentration, but also by the temperature dependence of the limiting recombination mechanisms in the cell. This paper investigates the influence of recombination through metallic impurities on the temperature sensitivity of multicrystalline silicon wafers. Spatially resolved temperature dependent analysis is performed to evaluate the temperature sensitivity of wafers from different brick positions before and after being subjected to phosphorus diffusion gettering. Local spatial analysis is performed on intra-grain areas, dislocation clusters and grain boundaries. Lar…

010302 applied physicsMaterials scienceOpen-circuit voltagebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionGetterlaw0103 physical sciencesSolar cellOptoelectronicsGrain boundaryWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessRecombination2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Temperature Dependent Suns-V<inf>oc</inf> of Multicrystalline Silicon Solar Cells from Different Ingot Positions

2018

This paper presents temperature dependent Suns- Voc measurements on multicrystalline silicon cells originating from different ingot positions. The effective lifetime is found to increase for all cells when the temperature is increased from 25°C to 6°C. However, cells from the top of the ingot show a considerably larger increas 40–50% for illumination conditions of 0.1-1 Sun, compared to an increase of 20-30% observed for cells from the bottom. The decrease in Voc with increasing temperature is found to be lower for cells from the top of the ingot compared to cells from the bottom. The temperature coefficient of the Voc is found to vary 5% along the ingot at 1 Sun, highlighting the influence…

010302 applied physicsMaterials scienceSiliconbusiness.industry020209 energyPhotovoltaic systemchemistry.chemical_element02 engineering and technologySuns in alchemy01 natural sciencesTemperature measurementchemistry0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsIngotbusinessTemperature coefficientSensitivity (electronics)2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
researchProduct

Choice of the detectors for light impurities plasma studies at W7-X using ‘CO Monitor’ system

2019

Abstarct The ‘CO Monitor’ is a new spectrometer system dedicated for the continuous measurements of line intensities of carbon, oxygen, boron and nitrogen at the fusion plasma experiment Wendelstein 7-X (W7-X). Its main purpose is to deliver constant information about indicated elements with high time resolution (better than 1 ms), but low spatial resolution since the line shapes are not going to be investigated. The system consists of four independent channels, each equipped with dispersive element dedicated for measurement of selected line of interest. In order to perform the highest efficiency of the ‘CO Monitor’ system, it is essential to choose the proper detector type for this task. T…

010302 applied physicsMaterials scienceSpectrometerbusiness.industryMechanical EngineeringDetectorPhase (waves)PlasmaElectronXUVDetectorsWendelstein 7-XStellarator01 natural sciencesLine (electrical engineering)010305 fluids & plasmasOpticsNuclear Energy and Engineering0103 physical sciencesGeneral Materials SciencebusinessSensitivity (electronics)Image resolutionCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Reduced temperature sensitivity of multicrystalline silicon solar cells with low ingot resistivity

2016

This study presents experimental data on the reduction of temperature sensitivity of multicrystalline silicon solar cells made from low resistivity ingot. The temperature coefficients of solar cells produced from different ingot resistivities are compared, and the advantages of increasing the net doping are explained.

010302 applied physicsMaterials scienceTemperature sensitivityintegumentary systemSiliconDopingMetallurgytechnology industry and agriculturefood and beverageschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMonocrystalline siliconReduced propertieschemistryElectrical resistivity and conductivity0103 physical sciencesIngot0210 nano-technologySensitivity (electronics)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct

Temperature Coefficients of Solar Cell Parameters at Maximum Power Point

2020

Analytical expressions for the temperature coefficients of the maximum power point voltage and current are presented. The temperature coefficients are calculated assuming the bandgap to be a linear function of the temperature and accounting for energy losses of non-radiative nature. The latter are introduced in the model through the External Radiative Efficiency. The so-called $\gamma$ parameter, which has been shown to account for the thermal sensitivity of all mechanisms determining the open-circuit voltage, appears to also play a role in the temperature coefficient of the maximum power point voltage and current. Numerical results and a comparison with experimental measurements are also p…

010302 applied physicsPhysicsMaximum power principle02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesTemperature measurementLinear functionlaw.inventionlaw0103 physical sciencesThermalSolar cellSensitivity (control systems)0210 nano-technologyTemperature coefficientVoltage2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
researchProduct

ABALONETM Photosensors for the IceCube experiment

2020

Abstract The ABALONE TM Photosensor Technology (U.S. Pat. 9,064,678) is a modern technology specifically invented for cost-effective mass production, robustness, and high performance. We present the performance of advanced fused-silica ABALONE Photosensors, developed specifically for the potential extension of the IceCube neutrino experiment, and stress-tested for 120 days. The resulting performance makes a significant difference: intrinsic gain of ≈ 6 × 108, total afterpulsing rate of only 5 × 10−3 ions per photoelectron , sub-nanosecond timing resolution, single-photon sensitivity, and unique radio-purity and UV sensitivity, thanks to the fused silica components—at no additional cost to t…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonbusiness.industryDetectorSignificant differencePhotodetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesUv sensitivityIntrinsic gainOptics0103 physical sciencesNeutrino0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect

2021

Lasing is a well-established field in optics with several applications. Yet, having lasing or huge amplification in other wave systems remains an elusive goal. Here, we utilize the concept of coherent perfect absorber-laser to realize an acoustic analog of laser with a proven amplification of more than 10 4 in terms of the scattered acoustic signal at a frequency of a few kHz. The obtained acoustic laser (or the coherent perfect absorber-laser) is shown to possess extremely high sensitivity and figure of merit with regard to ultra-small variations of the pressure (density and compressibility) and suggests its evident potential to build future acoustic pressure devices such as precise sensor…

010302 applied physicsPhysics[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]business.industry[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::OpticsGeneral Physics and AstronomyCoherent perfect absorber02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials021001 nanoscience & nanotechnologyLaser01 natural sciencesSignallaw.inventionOpticslaw0103 physical sciencesCompressibilityFigure of merit0210 nano-technologySound pressurebusinessLasing thresholdSensitivity (electronics)
researchProduct