6533b7cffe1ef96bd1259a59

RESEARCH PRODUCT

Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect

Khaled N. SalamaYing WuWaqas W. AhmadAbdelkrim KhelifMohamed Farhat

subject

010302 applied physicsPhysics[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]business.industry[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::OpticsGeneral Physics and AstronomyCoherent perfect absorber02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials021001 nanoscience & nanotechnologyLaser01 natural sciencesSignallaw.inventionOpticslaw0103 physical sciencesCompressibilityFigure of merit0210 nano-technologySound pressurebusinessLasing thresholdSensitivity (electronics)

description

Lasing is a well-established field in optics with several applications. Yet, having lasing or huge amplification in other wave systems remains an elusive goal. Here, we utilize the concept of coherent perfect absorber-laser to realize an acoustic analog of laser with a proven amplification of more than 10 4 in terms of the scattered acoustic signal at a frequency of a few kHz. The obtained acoustic laser (or the coherent perfect absorber-laser) is shown to possess extremely high sensitivity and figure of merit with regard to ultra-small variations of the pressure (density and compressibility) and suggests its evident potential to build future acoustic pressure devices such as precise sensors.

https://hal.archives-ouvertes.fr/hal-03549395