Search results for "Senso"
showing 10 items of 4750 documents
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space
2017
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches whi…
Dynamic large-scale network synchronization from perception to action
2018
Sensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal processing is coordinated across these brain areas to support functions from perception to action remains unknown. We investigated whether phase synchronization in large-scale networks coordinate these processes. We recorded human cortical activity with magnetoencephalography (MEG) during a task in which weak somatosensory stimuli remained unperceived or were perceived. We then assessed dynamic evolutio…
Hyperosmolarity and Benzalkonium Chloride Differently Stimulate Inflammatory Markers in Conjunctiva-Derived Epithelial Cells in vitro
2017
Tear hyperosmolarity is known to cause ocular surface inflammation in dry eye syndrome. Benzalkonium chloride (BAK), an eyedrop preservative, is known to induce dry eye in long-term-treated patients. Analyzing the modulation of the proinflammatory potential of hyperosmolarity in the presence of BAK on the conjunctiva could give new insights into the effect of this preservative on the disease. In a hyperosmolar model on a conjunctiva-derived cell line, and in the presence of BAK, we evaluated key inflammatory markers [CCL2, IL-8, IL-6, macrophage migration inhibitory factor (MIF) and intercellular adhesion molecule (ICAM)-1] as well as the osmoprotectant element nuclear factor of activated T…
The Problem of Mental Action: Predictive Control Without Sensory Sheets by Metzinger, T. (2017). In Philosophy and Predictive Processing, eds T. Metz…
2018
A growing number of studies on the acquisition of lexical tone by adult learners have revealed that factors such as language background, musical experience, cognitive abilities, and neuroanatomy all play a role in determining tone learning success. On the basis of these findings, it has been argued that the effectiveness of tone learning in adulthood depends on individual differences in these factors. However, it is not clear whether similar individual differences play an analogous role in tone learning in childhood. Indeed, relatively few studies have made comparisons between how adults and children learn lexical tones. Here, we review recent developments for tone learning in both adults a…
Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase
2020
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…
Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.
2016
We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements
2018
AbstractVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task …
Suprathreshold stochastic resonance behind cancer
2018
Noise in gene expression is pervasive and, in some cases, even fulfills a functional role. Cancer cell populations exploit noise to increase heterogeneity as a defense against therapies. What lies behind this picture is a phenomenon of stochastic resonance led by the collective, rather than by individual cells.
FRET biosensor allows spatio-temporal observation of shear stress-induced polar RhoGDIα activation
2018
Rho GDP-dissociation inhibitor α (RhoGDIα) is a known negative regulator of the Rho family that shuts off GDP/GTP cycling and cytoplasm/membrane translocation to regulate cell migration. However, to our knowledge, no reports are available that focus on how the RhoGDIα-Rho GTPases complex is activated by laminar flow through exploring the activation of RhoGDIα itself. Here, we constructed a new biosensor using fluorescence resonance energy transfer (FRET) technology to measure the spatio-temporal activation of RhoGDIα in its binding with Rho GTPases in living HeLa cells. Using this biosensor, we find that the dissociation of the RhoGDIα-Rho GTPases complex is increased by shear stress, and i…
Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings
2016
Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…