Search results for "Set theory"
showing 10 items of 751 documents
Overlapping self-affine sets of Kakeya type
2009
We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.
Complex powers and non-compact manifolds
2002
We study the complex powers $A^{z}$ of an elliptic, strictly positive pseudodifferential operator $A$ using an axiomatic method that combines the approaches of Guillemin and Seeley. In particular, we introduce a class of algebras, ``extended Weyl algebras,'' whose definition was inspired by Guillemin's paper on the subject. An extended Weyl algebra can be thought of as an algebra of ``abstract pseudodifferential operators.'' Many algebras of pseudodifferential operators are extended Weyl algebras. Several results typical for algebras of pseudodifferential operators (asymptotic completeness, construction of Sobolev spaces, boundedness between apropriate Sobolev spaces, >...) generalize to…
Upper Bound for the Approximation Error for the Kirchhoff-Love Arch Problem
2013
In this paper, a guaranteed and computable upper bound of approximation errors for the Kirchhoff-Love arch problem is derived. In general, it belongs to the class of functional a posteriori error estimates. The derivation method uses purely functional arguments and, therefore, the estimates are valid for any conforming approximation within the energy space. The computational implementation of the upper bound is discussed and demonstrated by a numerical example.
Oscillatory Behavior of Second-Order Nonlinear Neutral Differential Equations
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/143614 Open Access We study oscillatory behavior of solutions to a class of second-order nonlinear neutral differential equations under the assumptions that allow applications to differential equations with delayed and advanced arguments. New theorems do not need several restrictive assumptions required in related results reported in the literature. Several examples are provided to show that the results obtained are sharp even for second-order ordinary differential equations and improve related contributions to the subject.
Asymptotic Behavior of Higher-Order Quasilinear Neutral Differential Equations
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/395368 Open Access We study asymptotic behavior of solutions to a class of higher-order quasilinear neutral differential equations under the assumptions that allow applications to even- and odd-order differential equations with delayed and advanced arguments, as well as to functional differential equations with more complex arguments that may, for instance, alternate indefinitely between delayed and advanced types. New theorems extend a number of results reported in the literature. Illustrative examples are presented.
Evaluative linguistic expressions vs. fuzzy categories
2015
In this paper, we discuss the distinction between categories characterized by verbal labels taken from a fuzzy rating scale and special class of linguistic expressions, called evaluative. The latter form a general class of expressions that includes gradable and evaluative adjectives and their hedges. First, we will provide a brief linguistic analysis of them. Then we outline basic principles for construction of the mathematical model of semantics of evaluative expressions. In Section 3 we will analyze the concepts of rating scale with verbal labels (fuzzy rating scale), their semantics and demonstrate that the latter cannot be identified with the semantics of evaluative expressions. Finally…
ChemInform Abstract: Pillar[n]arenes - A Novel, Highly Promising Class of Macrocyclic Host Molecules
2014
Review: [preparation, structure in solution and in the solid state and complexation; 100 refs.
Importance sampling for Lambda-coalescents in the infinitely many sites model
2011
We present and discuss new importance sampling schemes for the approximate computation of the sample probability of observed genetic types in the infinitely many sites model from population genetics. More specifically, we extend the 'classical framework', where genealogies are assumed to be governed by Kingman's coalescent, to the more general class of Lambda-coalescents and develop further Hobolth et. al.'s (2008) idea of deriving importance sampling schemes based on 'compressed genetrees'. The resulting schemes extend earlier work by Griffiths and Tavar\'e (1994), Stephens and Donnelly (2000), Birkner and Blath (2008) and Hobolth et. al. (2008). We conclude with a performance comparison o…
Positive Versions of Polynomial Time
1998
Abstract We show that restricting a number of characterizations of the complexity class P to be positive (in natural ways) results in the same class of (monotone) problems, which we denote by posP . By a well-known result of Razborov, posP is a proper subclass of the class of monotone problems in P . We exhibit complete problems for posP via weak logical reductions, as we do for other logically defined classes of problems. Our work is a continuation of research undertaken by Grigni and Sipser, and subsequently Stewart; indeed, we introduce the notion of a positive deterministic Turing machine and consequently solve a problem posed by Grigni and Sipser.
Radial symmetry of minimizers to the weighted Dirichlet energy
2020
AbstractWe consider the problem of minimizing the weighted Dirichlet energy between homeomorphisms of planar annuli. A known challenge lies in the case when the weight λ depends on the independent variable z. We prove that for an increasing radial weight λ(z) the infimal energy within the class of all Sobolev homeomorphisms is the same as in the class of radially symmetric maps. For a general radial weight λ(z) we establish the same result in the case when the target is conformally thin compared to the domain. Fixing the admissible homeomorphisms on the outer boundary we establish the radial symmetry for every such weight.