Search results for "Set theory"
showing 10 items of 751 documents
Second-Order Calculus on RCD Spaces
2020
In this conclusive chapter we introduce the class of those metric measure spaces that satisfy the Riemannian curvature-dimension condition, briefly called RCD spaces, and we develop a thorough second-order differential calculus over these structures.
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
2018
The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example.
2014
The present review discusses the known synthetic routes to the lamellarin alkaloids published until 2014. It begins with syntheses of the structurally simpler type-II lamellarins and then focuses on the larger class of the 5,6-saturated and -unsaturated type-I lamellarins. The syntheses are grouped by the strategy employed for the assembly of the central pyrrole ring.
The expressive power of the shuffle product
2010
International audience; There is an increasing interest in the shuffle product on formal languages, mainly because it is a standard tool for modeling process algebras. It still remains a mysterious operation on regular languages.Antonio Restivo proposed as a challenge to characterize the smallest class of languages containing the singletons and closed under Boolean operations, product and shuffle. This problem is still widely open, but we present some partial results on it. We also study some other smaller classes, including the smallest class containing the languages composed of a single word of length 2 which is closed under Boolean operations and shuffle by a letter (resp. shuffle by a l…
Some new fixed point results in non-Archimedean fuzzy metric spaces
2013
In this paper, we introduce the notions of fuzzy $(\alpha,\beta,\varphi)$-contractive mapping, fuzzy $\alpha$-$\phi$-$\psi$-contractive mapping and fuzzy $\alpha$-$\beta$-contractive mapping and establish some results of fixed point for this class of mappings in the setting of non-Archimedean fuzzy metric spaces. The results presented in this paper generalize and extend some recent results in fuzzy metric spaces. Also, some examples are given to support the usability of our results.
Fast Matrix Multiplication
2015
Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time O(n2.3755). Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le~Gall has led to an improved algorithm running in time O(n2.3729). These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd. We show that this exact approach cannot result in an algorithm with running time O(n2.3725), and identify a wide class of variants of this approach which cannot result in an algorithm with running time $O(n^{2.3078}); in particular, this approach cannot prove the conjecture that for every e > 0, …
Systematisation of Systems Solving Physics Boundary Value Problems
2020
A general conservation law that defines a class of physical field theories is constructed. First, the notion of a general field is introduced as a formal sum of differential forms on a Minkowski manifold. By the action principle the conservation law is defined for such a general field. By construction, particular field notions of physics, e.g., magnetic flux, electric field strength, stress, strain etc. become instances of the general field. Hence, the differential equations that constitute physical field theories become also instances of the general conservation law. The general field and the general conservation law together correspond to a large class of relativistic hyperbolic physical …
Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
2018
In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in "Strong-interaction limit of density-functional theory" by M. Seidl.
Noise-tolerant efficient inductive synthesis of regular expressions from good examples
1997
We present an almost linear time method of inductive synthesis restoring simple regular expressions from one representative (good) example. In particular, we consider synthesis of expressions of star-height one, where we allow one union operation under each iteration, and synthesis of expressions without union operations from examples that may contain mistakes. In both cases we provide sufficient conditions defining precisely the class of target expressions and the notion of good examples under which the synthesis algorithm works correctly, and present the proof of correctness. In the case of expressions with unions the proof is based on novel results in the combinatorics of words. A genera…
Disorder and interactions in systems out of equilibrium : the exact independent-particle picture from density functional theory
2017
Density functional theory (DFT) exploits an independent-particle-system construction to replicate the densities and current of an interacting system. This construction is used here to access the exact effective potential and bias of non-equilibrium systems with disorder and interactions. Our results show that interactions smoothen the effective disorder landscape, but do not necessarily increase the current, due to the competition of disorder screening and effective bias. This puts forward DFT as a diagnostic tool to understand disorder screening in a wide class of interacting disordered systems.