Search results for "Signal Processing"
showing 10 items of 2451 documents
Integration of 3D and multispectral data for cultural heritage applications: Survey and perspectives
2013
International audience; Cultural heritage is increasingly put through imaging systems such as multispectral cameras and 3D scanners. Though these acquisition systems are often used independently, they collect complementary information (spectral vs. spatial) used for the study, archiving and visualization of cultural heritage. Recording 3D and multispectral data in a single coordinate system enhances the potential insights in data analysis. Wepresent the state of the art of such acquisition systems and their applications for the study of cultural her- itage. Wealso describe existing registration techniques that can be used to obtain 3D models with multispec- tral texture and explore the idea…
Scene-based noise reduction on a smart camera
2012
International audience; Raw output data from CMOS image sensors tends to exhibit significant noise called Fixed-Pattern Noise (FPN) due to on-die variations between pixel photodetectors. FPN is often corrected by subtracting its value, estimated through calibration, from the sensor's raw signal. This paper introduces an on-line scene-based technique for an improved FPN compensation which does not rely on calibration, and hence is more robust to the dynamic changes in the FPN which may occur slowly over time. Development has been done with a special emphasis on real-time hardware implementation on a FPGA-based smart camera. Experimental results on different scenes are depicted showing that t…
Kolmogorov Superposition Theorem and Its Application to Multivariate Function Decompositions and Image Representation
2008
International audience; In this paper, we present the problem of multivariate function decompositions into sums and compositions of monovariate functions. We recall that such a decomposition exists in the Kolmogorov's superposition theorem, and we present two of the most recent constructive algorithms of these monovariate functions. We first present the algorithm proposed by Sprecher, then the algorithm proposed by Igelnik, and we present several results of decomposition for gray level images. Our goal is to adapt and apply the superposition theorem to image processing, i.e. to decompose an image into simpler functions using Kolmogorov superpositions. We synthetise our observations, before …
Noise removal using a nonlinear two-dimensional diffusion network
1998
Un reseau electrique non lineaire bidimensionnel, constitue de N×N cellules identiques, et modelisant l’equation de Nagumo discrete est presente. A l’aide d’une nouvelle description de la fonction non lineaire, on peut predire analytiquement l’evolution temporelle de la partie coherente du signal, ainsi que celle des perturbations de petites amplitudes qui lui sont superposees. Enfin, des applications a l’amelioration du rapport signal sur bruit, ou au traitement d’images sont suggerees.
Noise estimation from digital step-model signal
2013
International audience; This paper addresses the noise estimation in the digital domain and proposes a noise estimator based on the step signal model. It is efficient for any distribution of noise because it does not rely only on the smallest amplitudes in the signal or image. The proposed approach uses polarized/directional derivatives and a nonlinear combination of these derivatives to estimate the noise distribution (e.g., Gaussian, Poisson, speckle, etc.). The moments of this measured distribution can be computed and are also calculated theoretically on the basis of noise distribution models. The 1D performances are detailed, and as our work is mostly dedicated to image processing, a 2D…
Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT
2016
International audience; In this paper, a new method based on the continuous wavelet transform is described in order to detect the QRS, P and T waves. QRS, P and T waves may be distinguished from noise, baseline drift or irregular heartbeats. The algorithm, described in this paper, has been evaluated using the Computers in Cardiology (CinC) Challenge 2011 database and also applied on the MIT-BIH Arrhythmia database (MITDB). The data from the CinC Challenge 2011 are standard 12 ECG leads recordings with full diagnostic bandwidth compared to the MITDB which only includes two leads for each ECG signal. Firstly, our algorithm is validated using fifty 12 leads ECG samples from the CinC collection…
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
2017
On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…
Enhancement and assessment of WKS variance parameter for intelligent 3D shape recognition and matching based on MPSO
2016
This paper presents an improved wave kernel signature (WKS) using the modified particle swarm optimization (MPSO)-based intelligent recognition and matching on 3D shapes. We select the first feature vector from WKS, which represents the 3D shape over the first energy scale. The choice of this vector is to reinforce robustness against non-rigid 3D shapes. Furthermore, an optimized WKS-based method for extracting key-points from objects is introduced. Due to its discriminative power, the associated optimized WKS values with each point remain extremely stable, which allows for efficient salient features extraction. To assert our method regarding its robustness against topological deformations,…
Une architecture programmable de traitement des impulsions zéro-temps mort pour l'instrumentation nucléaire
2015
In the field of nuclear instrumentation, digital signal processing architectures have to deal with the poissonian characteristic of the signal, composed of random arrival pulses which requires current architectures to work in dataflow. Thus, the real-time needs implies losing pulses when the pulse rate is too high. Current architectures paralyze the acquisition of the signal during the pulse processing inducing a time during no signal can be processed, this is called the dead time. These issue have led current architectures to use dedicated solutions based on reconfigurable components such as FPGAs. The requirement of end users to implement a wide range of applications on a large number of …
LDR Image to HDR Image Mapping with Overexposure Preprocessing
2013
International audience; Due to the growing popularity of High Dynamic Range (HDR) images and HDR displays, a large amount of existing Low Dynamic Range (LDR) images are required to be converted to HDR format to benefit HDR advantages, which give rise to some LDR to HDR algorithms. Most of these algorithms especially tackle overexposed areas during expanding, which is the potential to make the image quality worse than that before processing and introduces artifacts. To dispel these problems, we . present a new,LDR to HDR approach, unlike the existing techniques, it focuses on avoiding sophisticated treatment to overexposed areas in dynamic range expansion step. Based on a separating principl…