Search results for "Signal processing"
showing 10 items of 2451 documents
Vibration reduction on city buses: Determination of optimal position of engine mounts
2010
International audience; This study is composed of three essential parts. The first part describes an indirect semi-experimental method which is used to reconstruct the excitation force of an operating diesel engine from the acceleration data measured at the mounting points. These internal forces can not be directly measured with force sensors; they have to be derived from the dynamic deformation of the engine support, so a theoretical analysis is carried out to derive the equations for the force re-construction.The second part deals with prevention of low frequency vibration of the powertrain from spreading to the rest of the vehicle. Three uncoupling techniques are used to minimize these v…
Data-based modeling and estimation of vehicle crash processes in frontal fixed-barrier crashes
2017
Abstract As a complex process, vehicle crash is challenging to be described and estimated mathematically. Although different mathematical models are developed, it is still difficult to balance the complexity of models and the performance of estimation. The aim of this work is to propose a novel scheme to model and estimate the processes of vehicle-barrier frontal crashes. In this work, a piecewise model structure is predefined to represent the accelerations of vehicle in frontal crashes. Each segment in the model is corresponding to the energy absorbing component in the crashworthiness structure. With the help of Ensemble Empirical Mode Decomposition (EEMD), a robust scheme is proposed for …
Central catadioptric image processing with geodesic metric
2011
International audience; Because of the distortions produced by the insertion of a mirror, catadioptric images cannot be processed similarly to classical perspective images. Now, although the equivalence between such images and spherical images is well known, the use of spherical harmonic analysis often leads to image processing methods which are more difficult to implement. In this paper, we propose to define catadioptric image processing from the geodesic metric on the unitary sphere. We show that this definition allows to adapt very simply classical image processing methods. We focus more particularly on image gradient estimation, interest point detection, and matching. More generally, th…
Graph Filtering of Time-Varying Signals over Asymmetric Wireless Sensor Networks
2019
In many applications involving wireless sensor networks (WSNs), the observed data can be modeled as signals defined over graphs. As a consequence, an increasing interest has been witnessed to develop new methods to analyze graph signals, leading to the emergence of the field of Graph Signal Processing. One of the most important processing tools in this field is graph filters, which can be easily implemented distributedly over networks by means of cooperation among the nodes. Most of previous works related to graph filters assume the same connection probability in both link directions when transmitting an information between two neighboring nodes. This assumption is not realistic in practice…
Using an Adaptive High-Gain Extended Kalman Filter With a Car Efficiency Model
2010
The authors apply the Adaptive High-Gain Extended Kalman Filter (AEKF) to the problem of estimating engine efficiency with data gathered from normal driving. The AEKF is an extension of the traditional Kalman Filter that allows the filter to be reactive to perturbations without sacrificing noise filtering. An observability normal form of the engine efficiency model is developed for the AEKF. The continuous-discrete AEKF is presented along with strategies for dealing with asynchronous data. Empiric test results are presented and contrasted with EKF-derived results.Copyright © 2010 by ASME
K-nearest neighbor driving active contours to delineate biological tumor volumes
2019
Abstract An algorithm for tumor delineation in positron emission tomography (PET) is presented. Segmentation is achieved by a local active contour algorithm, integrated and optimized with the k-nearest neighbor (KNN) classification method, which takes advantage of the stratified k-fold cross-validation strategy. The proposed approach is evaluated considering the delineation of cancers located in different body districts (i.e. brain, head and neck, and lung), and considering different PET radioactive tracers. Data are pre-processed in order to be expressed in terms of standardized uptake value, the most widely used PET quantification index. The algorithm uses an initial, operator selected re…
Fault detection for nonlinear networked systems based on quantization and dropout compensation: An interval type-2 fuzzy-model method
2016
Abstract This paper investigates the problem of filter-based fault detection for a class of nonlinear networked systems subject to parameter uncertainties in the framework of the interval type-2 (IT2) T–S fuzzy model-based approach. The Bernoulli random distribution process and logarithm quantizer are used to describe the measurement loss and signals quantization, respectively. In the framework of the IT2 T–S fuzzy model, the parameter uncertainty is handled by the membership functions with lower and upper bounds. A novel IT2 fault detection filter is designed to guarantee the residual system to be stochastically stable and satisfy the predefined H ∞ performance. It should be mentioned that…
Sampled Fictitious Play on Networks
2019
We formulate and solve the problem of optimizing the structure of an information propagation network between multiple agents. In a given space of interests (e.g., information on certain targets), each agent is defined by a vector of their desirable information, called filter, and a vector of available information, called source. The agents seek to build a directed network that maximizes the value of the desirable source-information that reaches each agent having been filtered en route, less the expense that each agent incurs in filtering any information of no interest to them. We frame this optimization problem as a game of common interest, where the Nash equilibria can be attained as limit…
Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation
2016
This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…
An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals
2016
In this paper, a novel algebraic method is proposed to estimate amplitudes, frequencies, and phases of a biased and noisy sum of complex exponential sinusoidal signals. The resulting parameter estimates are given by original closed formulas, constructed as integrals acting as time-varying filters of the noisy measured signal. The proposed algebraic method provides faster and more robust results, compared with usual procedures. Some computer simulations illustrate the efficiency of our method. Copyright © 2016 John Wiley & Sons, Ltd.