Search results for "Silica nanoparticle"

showing 10 items of 59 documents

Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials

2013

[EN] A hybrid capped mesoporous material, which was selectively opened in the presence of Tetryl and TNT, has been synthesised and used for the fluorogenic recognition of these nitroaromatic explosives.

Aromatic compoundsINGENIERIA DE LA CONSTRUCCIONMaterials scienceExplosive materialTECNOLOGIA DE ALIMENTOSInorganic chemistryNanotechnologyNitroaromatic explosivesSilica nanoparticleschemistry.chemical_compoundNitroaromatic explosivesQUIMICA ORGANICAExplosives detectionQUIMICA ANALITICAGeneral Materials ScienceNanoscopic scaleRenewable Energy Sustainability and the EnvironmentQUIMICA INORGANICAGeneral ChemistryTetrylSilica nanoparticlesMesoporous materialsFluorogenicschemistryMesoporous hybridsHybrid materialsHybrid materialMesoporous material
researchProduct

Vibronic structures in the visible luminescence of silica nanoparticles

2014

Time resolved photoluminescence investigation in air and in vacuum atmosphere of the visible luminescence related to silica surface defects is here reported. Two contributions can be singled out: one, observed both in air and in vacuum, is the well-known blue band, peaked around 2.8 eV decaying in ∼5 ns; the other, only observed in vacuum, is a structured emission in the violet range characterized by two vibronic progressions spaced 1370 cm−1 and 360 cm−1 decaying in ∼100 ns. In contrast with previous attribution, the well distinguishable spectroscopic properties together with the observation of the effects induced by the interaction with nitrogen allow to state that the emission bands orig…

AtmosphereSilica nanoparticlesRange (particle radiation)PhotoluminescencechemistrySilica nanoparticles defects phonon-coupling photoluminescencechemistry.chemical_elementNanoparticleAtomic physicsLuminescenceNitrogenBlue bandAIP Conference Proceedings
researchProduct

Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation

2020

The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and developm…

Biocidecondensation in emulsionNanoparticle02 engineering and technologyBacterial growth010402 general chemistrySettore BIO/19 - Microbiologia Generale01 natural sciencesKocuria rhizophilabiocideslcsh:Chemistrystone conservationSpecific surface areabiodeteriorationmesoporous silica nanoparticlesOriginal ResearchSettore CHIM/02 - Chimica Fisicacontrolled release systemsbiologyChemistryGeneral Chemistrycultural heritageMesoporous silica021001 nanoscience & nanotechnologybiology.organism_classificationControlled release0104 chemical sciencesChemistryChemical engineeringbiocides biodeterioration condensation in emulsion controlled release systems cultural heritage mesoporous silica nanoparticles stone conservationlcsh:QD1-999Emulsion0210 nano-technologyFrontiers in Chemistry
researchProduct

New biocides based on imidazolinium-functionalised hybrid mesoporous silica nanoparticles

2022

Here, we report the development of a new biocide based on hybrid mesoporous silica nanoparticles (MSN). The MSN was synthesized by condensation method in emulsion followed by grafting with two different silylated ionic liquid moieties, namely butyl imidazolinium bromide and imidazolinium propansulfonate betaine. Features of nanoparticles were characterized by Thermogravimetry, Infrared and ss-NMR Spectroscopy, and Transmission Electron Microscopy. The antibacterial properties were tested against a Gram-positive bacterial strain previously isolated from artefacts of interest in the field of Cultural Heritage. Interestingly, the hybrid material presents an antibacterial activity higher than i…

Biocides Mesoporous silica nanoparticles Ionic liquids Biodeterioration Stone conservation Preventive conservationMechanics of MaterialsGeneral Materials ScienceGeneral ChemistryCondensed Matter Physics
researchProduct

Combination of silica nanoparticles with hydroxyapatite reinforces poly (l-lactide acid) scaffolds without loss of bioactivity

2013

Composite scaffolds of poly(l-lactide acid) and hydroxyapatite are of great interest in bone tissue engineering, but their mechanical properties are typically inferior to scaffolds of pure poly(l-lactide acid) due to agglomeration of the particles and weak interfacial component interaction. Fabrication strategies like double sonication of hydroxyapatite or increasing the amount of this inorganic filler do not effectively enhance the mechanical performance. In this study, poly(l-lactide acid) composites combining two types of fillers, mesoporous silica (SiO2) nanoparticles and hydroxyapatite, were developed to reinforce the poly(l-lactide acid) scaffold without any loss of bioactivity. A 5%…

BiomaterialsSilica nanoparticlesMaterials sciencePolymers and PlasticsChemical engineeringPoly-L-lactideComposite numberMaterials ChemistryBioengineeringBone tissue engineeringJournal of Bioactive and Compatible Polymers
researchProduct

Mesoporous Silica Nanoparticles in Chemical Detection: From Small Species to Large Bio-Molecules

2021

A recompilation of applications of mesoporous silica nanoparticles in sensing from the last five years is presented. Its high potential, especially as hybrid materials combined with organic or bio-molecules, is shown. Adding to the multiplying effect of loading high amounts of the transducer into the pores, the selectivity attained by the interaction of the analyte with the layer decorating the material is described. Examples of the different methodologies are presented.

Chemical technologyTP1-1185Reviewsilica nanoparticlesSilicon DioxideBiochemistryAtomic and Molecular Physics and OpticsAnalytical Chemistryoptical chemosensorsNanoparticlesElectrical and Electronic EngineeringPorosityInstrumentationmolecular gatesmesoporous hybrid materialsSensors
researchProduct

Thermally Induced Structural Modification of Silica Nanoparticles Investigated by Raman and Infrared Absorption Spectroscopies

2010

We report an experimental investigation by Raman and infrared (IR) absorption spectroscopies on the structural modifications induced by isochronal thermal treatments on amorphous SiO2 nanoparticles (fumed silica). In particular, three different commercial types of this material, characterized by particle mean diameters of 7, 14, and 40 nm, were subjected to thermal treatments from 100 up to 1000 °C. We found that some properties of fumed silica, such as the SiOSi mean bond angle, ring size distribution, and surface adsorbed water content, are drastically different from those of common bulk silica materials and intimately related to the particles' dimension. The SiOSi mean bond angle, probed…

Core shellSintering effectAnalytical chemistryDehydroxylationSilica nanoparticleSurface shellThermal treatmentTypical valueNanoparticleSinteringFumed silicaThermal treatmentThree-membered ringeducation.field_of_studyWater contentAdsorbed waterRaman lineAtomic networkSilicaThermally inducedSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSurfaceGeneral EnergysymbolsNetwork structureAbsorption (chemistry)IR measurementMaterials scienceAbsorption spectroscopyStrained structurePopulationInfrared imagingInfrared spectroscopyAbsorptionsymbols.namesakeAdsorptionAbsorption spectroscopyHighly strainedShells (structures)Physical and Theoretical ChemistryeducationFumed silicaNano silica Raman proprieta' strutturaliExperimental investigationParticle mean diameterBond angleStructural modificationSilica materialRaman spectroscopy
researchProduct

Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection

2013

The coupling of gated-indicator delivery with highly specific biochemical recognition is an innovative strategy for the detection of DNA sequences, able to compete with classical methods which need PCR amplification, in important areas such as point-of-care diagnostics or detection of specific biological contaminations with pathogens. Such comparatively simple and cheap yet highly selective and sensitive assays hold promise for use in less-developed areas of the world.

DNA BacterialINGENIERIA DE LA CONSTRUCCIONSupportsMesoporous silica nanoparticlesFermentansResponsive controlled releaseAmplificationmesoporous materialsBiologysensorsmedicine.disease_causeRapid detectionCatalysisgated materialschemistry.chemical_compoundMycoplasmaQUIMICA ORGANICAContaminationQUIMICA ANALITICABIOQUIMICA Y BIOLOGIA MOLECULARmedicineGated materialsRheumatoid arthritismycoplasmaControlled drug deliverySensorsQUIMICA INORGANICAGenomicsDNAGeneral ChemistryMycoplasmaCell culturesMolecular biologyHighly sensitivegenomic DNAchemistryDNAAngewandte Chemie International Edition
researchProduct

Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro

2013

AbstractDrug and gene delivery via nanoparticles across biological barriers such as the alveolar-capillary barrier of the lung constitutes an interesting and increasingly relevant field in nanomedicine. Nevertheless, potential hazardous effects of nanoparticles (NPs) as well as their cellular and systemic fate should be thoroughly examined. Hence, this study was designed to evaluate the effects of amorphous silica NPs (Sicastar) and (poly)organosiloxane NPs (AmOrSil) on the viability and the inflammatory response as well as on the cellular uptake mechanisms and fate in cells of the alveolar barrier. For this purpose, the alveolar epithelial cell line (NCI H441) and microvascular endothelial…

EndosomeCell SurvivalLipid BilayersPharmaceutical ScienceGene deliverysilica nanoparticlesEndocytosisClathrinNP transportCell LineDrug Delivery SystemsAlveolar-capillary barrierAlveolar capillary barrierElectric ImpedanceHumansColoring AgentsInflammationFlotillin-1/-2-dependent uptake/traffickingbiologyChemistryRhodaminesVesicleMicrocirculationEndothelial CellsMembrane ProteinsGeneral Medicinerespiratory systemSilicon DioxideNP uptakeIn vitroCoculture TechniquesEndocytosisCapillariesEndothelial stem cellPulmonary AlveoliNP-transportNanomedicineCell cultureImmunologybiology.proteinBiophysicsNanoparticlesBiotechnologyEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles

2013

[EN] In water and wine: Chromofluorogenic detection of the sulfite anion in pure water was accomplished by using a new hybrid organic-inorganic material that contained a probe entrapped in hydrophobic biomimetic cavities. This material was used for the detection of sulfite in red wine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

INGENIERIA DE LA CONSTRUCCIONOrganic-inorganic hybrid materialsInorganic chemistryWineSO2Electrochemical detectionMesoporous nanoparticlesCatalysisSilica nanoparticleschemistry.chemical_compoundQUIMICA ORGANICASulfiteQUIMICA ANALITICAOrganic inorganicAsthmatic-patientsElectrochemical detectionAsthmatic patientSpectrophotometric methodSensorsFood analysisBisulfiteQUIMICA INORGANICAGeneral ChemistryGeneral MedicineDerivatizationFoodschemistrySulfiteRatiometric fluorescent-probeCapillary electrophoretic determinationNuclear chemistryAngewandte Chemie
researchProduct