Search results for "Silicon"
showing 10 items of 1391 documents
Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D
2017
Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Ataca…
Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction.
2019
Significance Ingesta leave characteristic wear features on the tooth surface, which enable us to reconstruct the diet of extant and fossil vertebrates. However, whether dental wear is caused by internal (phytoliths) or external (mineral dust) silicate abrasives is controversially debated in paleoanthropology and biology. To assess this, we fed guinea pigs plant forages of increasing silica content (lucerne < grass < bamboo) without any external abrasives, both in fresh and dried state. Abrasiveness and enamel surface wear increased with higher forage phytolith content. Additionally, water loss altered plant material properties. Dental wear of fresh grass feeding was similar to lucerne brows…
SiC Based Latching Current Limiter for High Voltage Space Power Distribution Systems
2018
This study presents a novel Latching Current Limiter topology, based on a N-channel Silicon Carbide (SiC) MOSFET as the main switching element. The design has been carried out using only discrete components, without digital controllers. This design has been validated by simulation and with a prototype. Tests have been performed at 1000V, modifying the limitation times, current-limiting values and eventually checking the proper operation of the system.
Design of parallel compensator and stabilizing controller to mitigate non-minimum phase behaviour of the Czochralski Process
2020
Abstract This paper addresses the design of a parallel compensator and a stabilizing controller for the simplified crystal growth dynamics of the Czochralski (CZ) process, i.e., the process for the production of monocrystalline silicon ingots of uniform diameter. The diameter control of the produced ingots is achieved by a CCD camera measurement used to sense the radius of the boundary between the base of the growing crystal and the surrounding glowing meniscus — a raised melt surface connecting the crystal ingot with the flatter melt surface. Due to the intrinsic nature of the process, the bright ring radius measurement signal exhibits a non-minimum phase behaviour. A combination of the pa…
Al-SiC Metal Matrix Composite production through Friction Stir Extrusion of aluminum chips
2017
Abstract The production of most mechanical component requires machining operation, thus usually implying the cut material to be wasted as scrap. Traditional recycling techniques are not able to efficiently recycle metal chips because of some critical aspects that characterize such kind of scraps (shape, oxide layers, contaminating residues, etc). Friction Stir Extrusion is an innovative solid state direct-recycling technique for metal machining chips. During the process, a rotating tool is plunged into a hollows matrix to compact, stir and finally, back extrudes the chips to be recycled in a full dense rod. This process results to be particularly relevant since no preliminary treatment of t…
Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P5S3during silicic acid condensation and silica de…
2017
The silica forming repeat R5 of sil1 from Cylindrotheca fusiformis was the blueprint for the design of P5 S3 , a 50-residue peptide which can be produced in large amounts by recombinant bacterial expression. It contains 5 protein kinase A target sites and is highly cationic due to 10 lysine and 10 arginine residues. In the presence of supersaturated orthosilicic acid P5 S3 enhances silica-formation whereas it retards the dissolution of amorphous silica (SiO2 ) at globally undersaturated concentrations. The secondary structure of P5 S3 during these 2 processes was studied by circular dichroism (CD) spectroscopy, complemented by nuclear magnetic resonance (NMR) spectroscopy of the peptide in …
Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants
2018
There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and t…
Comparative Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical Microstimulation and Single-Neuron Recording in M…
2017
Intracortical microstimulation (ICMS) is one of the most widely employed techniques for providing causal evidence of the relationship between neuronal activity and specific motor, perceptual, or even cognitive functions. In recent years, several new types of linear multielectrode silicon probes have been developed, allowing researchers to sample neuronal activity at different depths along the same cortical site simultaneously and with high spatial precision. Nevertheless, silicon multielectrode probes have been rarely employed for ICMS studies and, more importantly, it is unknown whether and to what extent they can be used for combined recording and stimulation experiments. Here, we address…
Effect of graphene substrate type on formation of Bi2Se3 nanoplates
2019
AbstractKnowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as refer…
Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics.
2016
Self-preparation of nano liquid chromatography (nLC) columns has advantages regarding cost and flexibility. For targeted proteomics, we evaluated several approaches for particle-packing nLC columns and manufacturing fritless silica-based monolithic trap columns (50μm inner diameter). Our preferred approach for nLC column preparation was to magnetically stir Accucore core shell particles (C18 stationary phase) in ACN/water (80/20, v/v) suspensions during pressure-driven filling of polymer-fritted standard fused silica capillaries. The columns were ready for use about one hour after preparation had begun. They had comparable peak capacities (peptides) to commercial columns, and satisfactory w…