Search results for "Single-Molecule"
showing 10 items of 77 documents
Generalized bloch equations for optical interactions in confined geometries
2005
By combining the field-susceptibility technique with the optical Bloch equations, a general formalism is developed for the investigation of molecular photophysical phenomena triggered by nanometer scale optical fields in the presence of complex environments. This formalism illustrate the influence of the illumination regime on the fluorescence signal emitted by a single molecule in a complex environment. In the saturated case, this signal is proportional to the optical local density of states, while it is proportional to the near-field intensity in the non-saturated case. (C) 2005 Elsevier B.V. All rights reserved.
Force-clamp spectroscopy of reversible bond breakage.
2008
We consider reversible breaking of adhesion bonds or folding of proteins under the influence of a constant external force. We discuss the stochastic properties of the unbinding/rebinding events and analyze their mean number and their variance in the framework of simple two-state models. In the calculations, we exploit the analogy to single molecule fluorescence and particularly between unbinding/rebinding and photon emission events. Environmental fluctuation models are used to describe deviations from Markovian behavior. The second moment of the event-number distribution is found to be very sensitive to possible exchange processes and can thus be used to identify temporal fluctuations of th…
Analyzing the enforcement of a high-spin ground state for a metallacrown single-molecule magnet
2016
We have studied element-selective magnetic properties of the hetero- and homometallic metallacrowns $\mathrm{Cu}{(\mathrm{II})}_{2}[12\ensuremath{-}{\mathrm{MC}}_{YN(Shi)}\ensuremath{-}4]$ ($Y=\text{Cu}$, Fe, in short ${\mathrm{CuCu}}_{4}$ and ${\mathrm{CuFe}}_{4}$). These metallacrowns comprise four Fe or Cu ions surrounding a central Cu ion. Using x-ray magnetic circular dichroism we have probed local symmetries, electronic configuration, orbital and spin magnetic moments of the magnetic ions. The ratio between the Cu and Fe moment of $\ensuremath{-}0.11$ is independent of temperature in the range of 15 K to 90 K. The Cu moment shows antiparallel to the Fe moment. For ${\mathrm{CuCu}}_{4}…
Single-molecule FRET studies of counterion effects on the free energy landscape of human mitochondrial lysine tRNA.
2011
The folding energy landscape of RNA is greatly affected by interactions between the RNA and counterions that neutralize the backbone negative charges and may also participate in tertiary contacts. Valence, size, coordination number, and electron shell structure can all contribute to the energetic stabilization of specific RNA conformations. Using single-molecule fluorescence resonance energy transfer (smFRET), we have examined the folding properties of the RNA transcript of human mitochondrial tRNA(Lys), which possesses two different folded states in addition to the unfolded one under conditions of thermodynamic equilibrium. We have quantitatively analyzed the degree of RNA tertiary structu…
Slow Magnetic Relaxation in a Co 2 Dy Trimer and a Co 2 Dy 2 Tetramer
2021
The combination of Co(III) and Dy(III) with a compartmental Schiff base ligand (H 3 L = 3-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-propane-1,2-diol), presenting three different coordinating pockets, has allowed the synthesis of two novel Co(III)-Dy(III) complexes: [Co 2 Dy(HL) 4 ]NO 3 ·2CH 3 CN ( 1 ), a rare example of trinuclear linear Co III 2 Dy III complex (and the first with slow relaxation of magnetization in absence of a DC field) and [Co 2 Dy 2 (μ 3 -OH) 2 (HL) 2 (OAc) 6 ]·4.6H 2 O ( 2 ), the first tetranuclear Co III 2 Dy III 2 cluster with a rhomb-like structure where the Co(III) ions are connected along the short diagonal of the rhomb. 1 presents two different relaxation process…
Single-Molecule-Magnet Fe Fe and Antiferromagnetic Fe Coordination Clusters
2019
Supported by endogenous (part of the ligand, in-built) phenoxo bridges provided by the ligand 2,6-bis[{{(5-bromo-2-hydroxybenzyl)}{(2-(pyridylethyl)}amino}methyl]-4-methylphenol) (H3L), in its deprotonated form, exogenous (not part of the ligand, externally added or generated) oxo-/hydroxo- and acetato-bridged [FeII4FeIII2(O)2(O2CMe)4(L)2]·4Et2O (1) and [FeIII4(OH)2(O2CMe)3(L)2](ClO4)·3MeCN·2H2O (2) coordination clusters have been synthesized and structurally characterized. Complexes 1 and 2 have μ4-O and μ3-OH bridges, respectively. Magnetic studies on 1 reveal slow magnetic relaxation below 2 K. Both in-phase ( χ'M) and out-of-phase (χ″M) magnetic susceptibility were found to be frequency…
Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport
2016
Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe-II comple…
A many-body approach to transport in quantum systems : From the transient regime to the stationary state
2022
We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems: the non-equilibrium Green's function (NEGF) formalism. Within this formalism, one can treat, on the same footing, inter-particle interactions, external drives and/or perturbations, and coupling to baths with a (piece-wise) continuum set of degrees of freedom. After a historical overview on the theory of transport in quantum systems, we present a modern introduction of the NEGF approach to quantum transport. We discuss the inclusion of inter-particle interactions using diagrammatic techniques, and the use of the so-called embedding and inbedding techniques w…
Hybrid magnetic/superconducting materials obtained by insertion of a single-molecule magnet into TaS2 layers
2011
et al.
Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory
2013
Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experimen…