Search results for "Singlet"
showing 10 items of 352 documents
A Theoretical Insight into the Photophysics of Acridine
2001
The electronic absorption and emission spectra of acridine have been studied by means of a multiconfigurational second-order perturbation method (CASSCF/CASPT2) and its multistate extension (MS-CASPT2). The low-lying valence singlet and triplet π → π* and n → π* excited states have been computed. The location of the lowest Rydberg state (3s) has been also estimated. By optimization of the geometries of the ground and low-lying excited states and the calculation of transition energies and properties, the obtained results lead to a complete analysis and assignment of the available experimental singlet−singlet and triplet−triplet absorption spectra and to the description of the basic features …
B,B-Diporphyrinbenzyloxy-BODIPY dyes: synthesis and antenna effect.
2012
B,B-Diporphyrinbenzyloxy-BODIPY derivatives have been prepared in high yields, and the photophysical properties are reported. Singlet energy transfers from BODIPY to the porphyrin units have been analyzed.
Excited states of [3.3](4,4')biphenylophane: the role of charge-transfer excitations in dimers with pi-pi interaction.
2010
The singlet and triplet electronic excitation manifold of [3.3](4,4')biphenylophane (BPP), an intramolecular dimer, and 4,4'-dimethylbiphenyl (DMBP), the corresponding monomer, has been analyzed by employing the approximate coupled-cluster singles and doubles model (CC2). The calculated triplet-triplet and singlet-singlet transient absorption spectra show good agreement with recent experimental results. The calculations suggest a strong interaction of the two biphenyl moieties of BPP in the first singlet and triplet excited states due to the overlapping pi-electron systems, and Forster-Dexter theory for weak coupling cannot be applied. Both the first excited singlet and triplet states of BP…
On the low-lying singlet excited states of styrene: a theoretical contribution
2000
The present contribution analyses the trans–cis photoisomerization mechanism of ethene and styrene on the singlet manifold. Within the framework of multiconfigurational second-order perturbation theory (CASPT2), the extended multistate approach (MS-CASPT2) is found to be flexible enough to describe energy hypersurfaces adiabatically. For ethene, torsion about the CC bond towards a perpendicular structure leads to a situation where the energy difference between the ground and the lowest excited state is still too large (2.5 eV) for efficient radiationless decay. However, the energy gap decreases to 0.4 eV when one of the methylene moieties is, in addition, pyramidalized from the twisted stru…
[39] DNA damage induced by ultraviolet and visible light and its wavelength dependence
2000
Publisher Summary DNA damage induced by solar radiation in mammalian cells consists largely of two types of modification: pyrimidine dimers and oxidative modifications. Pyrimidine dimmers that can be subdivided into cyclobutane pyrimidine dimmers, (CPDs) and (6-4) photoproducts are the characteristic and most abundant modifications after direct excitation of DNA, although they can also be formed indirectly by energy transfer from other excited molecules such as carbonyl compounds. Oxidative DNA damage, which includes various pyrimidine and purine modifications, sites of base loss (AP sites), and strand breaks, is generated in only low yield after direct excitation of DNA (except at very sho…
Closer Investigation of the Kinetics and Mechanism of Spirovinylcyclopropyl Oxindole Reaction with 3Σ–g-O2 by Topological Approaches and Unraveling t…
2021
In this investigation at the MN15L/Def2-TZVP level of theory, we present computational evidence indicating that the reaction of 3Σ-g-O2 with spirovinylcyclopropyl oxindole (2) leads to a product called spiro-1,2-dioxolane (2) in its singlet state; this reaction occurs via a stepwise mechanism and its rate-determining step is catalyzed by iodine radicals, which promotes opening of the three-membered ring under dark conditions. The conversion of 2 to 1-benzylindoline-2,3-dione (3) and 2-vinyloxirane (4) takes place via a concerted and slightly asynchronous reaction. Both electron localization function and AIM topological analysis reveal that the step associated with the attack of the 3Σ-g-O2 …
Excited State N−H Tautomer Selectivity in the Singlet Energy Transfer of a Zinc(II)-Porphyrin-Truxene-Corrole Assembly
2017
International audience; An original corrole-containing polyad for S-1 energy transfer, in which one zinc(II)-porphyrin donor is linked to two free-base corrole acceptors by a truxene linker, is reported. This polyad exhibits a rapid zinc(II)-porphyrin*free-base corrole transfer (4.83x10(10)s(-1); 298K), even faster than the tautomerization in the excited state processes taking advantage of the good electronic communication provided by the truxene bridge. Importantly, the energy transfer process shows approximately 3-fold selectivity for one corrole N-H tautomer over the other even at low temperature (77K). This selectivity is due to the difference in the J-integral being effective in both t…
Metal Dependence on the Bidirectionality and Reversibility of the Singlet Energy Transfer in Artificial Special Pair-Containing Dyads
2017
International audience; The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb](2) bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M](2)-C6H4-[Fb], where [M](2) = [Fh](2), and completes a series reported earlier, where [M](2) = [Mg](2) (2) and [Zn](2) (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The…
Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching r…
2021
Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (Delta A) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction. Underlying…
Quantum chemical study on the population of the lowest triplet state of psoralen
2007
Abstract The efficient population of the low-lying triplet ππ * state of psoralen is studied with the quantum chemical CASPT2 method. Minima, singlet–triplet crossings, conical intersections, and reaction paths on the low-lying singlet and triplet states hypersurfaces of the system have been computed together with electronic energy gaps and spin–orbit coupling terms. A mechanism is proposed, favorable in the gas phase, for efficient deactivation of the initially populated singlet excited ππ * state, starting with an intersystem crossing with an n π * triplet state and evolving via a conical intersection toward the final lowest-lying ππ * triplet state, protagonist of the reactivity of psora…