Search results for "Singularity"

showing 10 items of 352 documents

Stability of Hamiltonian Systems of Two Degrees of Freedom and of Formally Conservative Mappings Near a Singular Point

1985

We restrict ourselves to the stability problems considered in our lecture because the length of this paper is limited. In contrast to the lecture, however, we consider here not only area preserving mappings but a more general class of mappings.

Pure mathematicsClass (set theory)SingularityDynamical systems theorySingular solutionMathematical analysisDegrees of freedomComputingMilieux_COMPUTERSANDEDUCATIONStability (learning theory)Physics::Physics EducationSingular point of a curveMathematicsHamiltonian system
researchProduct

Singularities of rational Bézier curves

2001

We prove that if an nth degree rational Bezier curve has a singular point, then it belongs to the two (n − 1)th degree rational Bezier curves defined in the (n − 1)th step of the de Casteljau algorithm. Moreover, both curves are tangent at the singular point. A procedure to construct Bezier curves with singularities of any order is given.  2001 Elsevier Science B.V. All rights reserved.

Pure mathematicsDe Casteljau's algorithmDegree (graph theory)Mathematical analysisAerospace EngineeringTangentBézier curveSingular point of a curveComputer Graphics and Computer-Aided DesignPolynomial interpolationComputer Science::GraphicsSingularityModeling and SimulationComputer Science::MultimediaAutomotive EngineeringCurve fittingMathematicsComputer Aided Geometric Design
researchProduct

Generic properties of singular trajectories

1997

Abstract Let M be a σ-compact C∞ manifold of dimension d ≥ 3. Consider on M a single-input control system : x (t) = F 0 (x(t)) + u(t) F 1 (x(t)) , where F0, F1 are C∞ vector fields on M and the set of admissible controls U is the set of bounded measurable mappings u : [0Tu]↦ R , Tu > 0. A singular trajectory is an output corresponding to a control such that the differential of the input-output mapping is not of maximal rank. In this article we show that for an open dense subset of the set of pairs of vector fields (F0, F1), endowed with the C∞-Whitney topology, all the singular trajectories are with minimal order and the corank of the singularity is one.

Pure mathematicsDense setGeneric propertyApplied MathematicsRank (differential topology)TopologyManifoldSingularityBounded functionOrder (group theory)Vector fieldMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
researchProduct

Complex powers on noncompact manifolds and manifolds with singularities

1988

Pure mathematicsGlobal analysisGeneral MathematicsRicci-flat manifoldDifferential topologyGravitational singularityConnected sumManifoldMathematicsMathematische Annalen
researchProduct

A Global View on Generic Geometry

2018

We describe how the study of the singularities of height and distance squared functions on submanifolds of Euclidean space, combined with adequate topological and geometrical tools, shows to be useful to obtain global geometrical properties. We illustrate this with several results concerning closed curves and surfaces immersed in \(\mathbb {R}^n\) for \(n=3,4, 5\).

Pure mathematicsInflection pointEuclidean spaceGravitational singularityConvexityMathematics
researchProduct

Singularities of lightlike hypersurfaces in Minkowski four-space

2006

We classify singularities of lightlike hypersurfaces in Minkowski 4-space via the contact invariants for the corresponding spacelike surfaces and lightcones.

Pure mathematicsLightlike hypersurfaceGeneral MathematicsMathematical analysisspacelike surfacelightconePhysics::Classical PhysicsSpace (mathematics)53A3541458C27Computer Science::OtherLorentzian distance-squared functionGeneral Relativity and Quantum CosmologyMinkowski spaceGravitational singularityMathematics::Differential GeometryMathematicsTohoku Mathematical Journal
researchProduct

On stability of logarithmic tangent sheaves. Symmetric and generic determinants

2021

We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of the projective space with constraints on the dimension and degree of the singularities of D. As main application, we prove that determinants and symmetric determinants have stable logarithmic tangent sheaves and we describe an open dense piece of the associated moduli space.

Pure mathematicsLogarithmMSC 14J60 14J17 14M12 14C05General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Commutative Algebra (math.AC)determinant01 natural sciencesStability (probability)Mathematics - Algebraic GeometryMathematics::Algebraic GeometryDimension (vector space)FOS: Mathematicsstability of sheavesProjective space0101 mathematicsAlgebraic Geometry (math.AG)MathematicsDegree (graph theory)010102 general mathematicsLogarithmic tangentTangentisolated singularitiesmoduli space of semistable sheavesMathematics - Commutative AlgebraModuli space010101 applied mathematicsGravitational singularityMathematics::Differential Geometry[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Cluster tilting for one-dimensional hypersurface singularities

2008

In this article we study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite dimensional symmetric and satisfy $\tau^2=\id$. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities.

Pure mathematicsMathematics(all)General MathematicsMathematical analysisTilting theoryBirational geometryRepresentation theoryMathematics - Algebraic GeometryElliptic curveHypersurfaceSimple (abstract algebra)FOS: MathematicsGravitational singularityRepresentation Theory (math.RT)Algebraic Geometry (math.AG)Mathematics - Representation TheoryAssociative propertyMathematicsAdvances in Mathematics
researchProduct

On a Theorem of Greuel and Steenbrink

2017

A famous theorem of Greuel and Steenbrink states that the first Betti number of the Milnor fibre of a smoothing of a normal surface singularity vanishes. In this paper we prove a general theorem on the first Betti number of a smoothing that implies an analogous result for weakly normal singularities.

Pure mathematicsMathematics::Algebraic GeometryGeneral theoremSingularityBetti numberGravitational singularityNormal surfaceMathematics::Algebraic TopologySmoothingMathematics
researchProduct

Stable Images and Discriminants

2020

We show that the discriminant/image of a stable perturbation of a germ of finite \(\mathcal {A}\)-codimension is a hypersurface with the homotopy type of a wedge of spheres in middle dimension, provided the target dimension does not exceed the source dimension by more than one. The number of spheres in the wedge is called the discriminant Milnor number/image Milnor number. We prove a lemma showing how to calculate this number, and show that when the target dimension does not exceed the source dimension, the discriminant Milnor number and the \(\mathcal {A}\)-codimension obey the “Milnor–Tjurina relation” familiar in the case of isolated hypersurface singularities. This relation remains conj…

Pure mathematicsMathematics::Algebraic GeometryHypersurfaceDiscriminantHomotopyPerturbation (astronomy)SPHERESGravitational singularityMathematics::Algebraic TopologyWedge (geometry)MathematicsMilnor number
researchProduct