Search results for "Singularity"
showing 10 items of 352 documents
Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
2007
The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…
Minimal Morse flows on compact manifolds
2006
Abstract In this paper we prove, using the Poincare–Hopf inequalities, that a minimal number of non-degenerate singularities can be computed in terms only of abstract homological boundary information. Furthermore, this minimal number can be realized on some manifold with non-empty boundary satisfying the abstract homological boundary information. In fact, we present all possible indices and types (connecting or disconnecting) of singularities realizing this minimal number. The Euler characteristics of all manifolds realizing this minimal number are obtained and the associated Lyapunov graphs of Morse type are described and shown to have the lowest topological complexity.
Milnor Number Equals Tjurina Number for Functions on Space Curves
2001
The equality of the Milnor number and Tjurina number for functions on space curve singularities, as conjectured recently by V. Goryunov, is proved. As a consequence, the discriminant in such a situation is a free divisor.
Complete, exact, and efficient computations with cubic curves
2004
The Bentley-Ottmann sweep-line method can be used to compute thearrangement of planar curves provided a number of geometricprimitives operating on the curves are available. We discuss themathematics of the primitives for planar algebraic curves of degreethree or less and derive efficient realizations. As a result, weobtain a complete, exact, and efficient algorithm for computingarrangements of cubic curves. Conics and cubic splines are specialcases of cubic curves. The algorithm is complete in that it handles all possibledegeneracies including singularities. It is exact in that itprovides the mathematically correct result. It is efficient in thatit can handle hundreds of curves with a quart…
Singular Perturbations and Operators in Rigged Hilbert Spaces
2015
A notion of regularity and singularity for a special class of operators acting in a rigged Hilbert space \({\mathcal{D} \subset \mathcal{H}\subset \mathcal{D}^\times}\) is proposed and it is shown that each operator decomposes into a sum of a regular and a singular part. This property is strictly related to the corresponding notion for sesquilinear forms. A particular attention is devoted to those operators that are neither regular nor singular, pointing out that a part of them can be seen as perturbation of a self-adjoint operator on \({\mathcal{H}}\). Some properties for such operators are derived and some examples are discussed.
Real Line Arrangements and Surfaces with Many Real Nodes
2008
A long standing question is if the maximum number μ(d) of nodes on a surface of degree d in P( ) can be achieved by a surface defined over the reals which has only real singularities. The currently best known asymptotic lower bound, μ(d) 5 12 d, is provided by Chmutov’s construction from 1992 which gives surfaces whose nodes have non-real coordinates. Using explicit constructions of certain real line arrangements we show that Chmutov’s construction can be adapted to give only real singularities. All currently best known constructions which exceed Chmutov’s lower bound (i.e., for d = 3, 4, . . . , 8, 10, 12) can also be realized with only real singularities. Thus, our result shows that, up t…
The indirect force method
1990
Abstract It is known that the matrix force method shows some advantages over the displacement method for certain classes of problems, particularly in optimization and in the stress concentration analysis. Notwithstanding this, few efforts have been made to employ this method in engineering problems. In this paper, within the elastic analysis of frames and trusses, the indirect force method, utilizing beam-node type finite elements, is proposed. This method is based on the kinematical and mechanical study of nodes and of beams, the latter connected with the nodes by their first extremes according to a preliminary arrangement. In this formulation kinematical singularities are included, in the…
Mappings of finite distortion: Removable singularities for locally homeomorphic mappings
2004
Let f be a locally homeomorphic mapping of finite distortion in dimension larger than two. We show that when the distortion of f satisfies a certain subexponential integrability condition, small sets are removable. The smallness is measured by a weighted modulus.
Mappings of finite distortion: Removable singularities
2003
We show that certain small sets are removable for bounded mappings of finite distortion for which the distortion function satisfies a suitable subexponential integrability condition. We also give an example demonstrating the sharpness of this condition.
Role of Levinson’s theorem in neutron-deuteron quartetS-wave scattering
1990
The real part of the phase shift for elastic neutron-deuteron scattering in the quartet {ital S} wave channel, as calculated with the exact three-body theory, assumes at threshold the value {pi} if normalized to zero at infinity; that is, it does not comply with the expectations raised by a naive application of Levinson's theorem since no bound state exists in this channel. A description of this situation on an equivalent two-body level via a potential, constructed by means of the Marchenko inverse scattering theory, necessitates the introduction of a fictitious bound state. This predominantly attractive, equivalent local potential can be related via supersymmetry to a strictly phase equiva…